找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpretable and Annotation-Efficient Learning for Medical Image Computing; Third International Jaime Cardoso,Hien Van Nguyen,Samaneh Abb

[復制鏈接]
樓主: GLAZE
51#
發(fā)表于 2025-3-30 12:08:39 | 只看該作者
52#
發(fā)表于 2025-3-30 13:07:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:27:22 | 只看該作者
Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteinssible only temporarily, existing frame-by-frame methods fail. In this paper, we provide a solution to segmentation of imperfect data through time based on temporal propagation and uncertainty estimation. We integrate uncertainty estimation into Mask R-CNN network and propagate motion-corrected segme
54#
發(fā)表于 2025-3-30 22:51:31 | 只看該作者
55#
發(fā)表于 2025-3-31 04:42:37 | 只看該作者
56#
發(fā)表于 2025-3-31 08:13:44 | 只看該作者
Semi-supervised Machine Learning with MixMatch and Equivalence Classesot been well translated to medical imaging. Of particular interest, the MixMatch method achieves significant performance improvement over popular semi-supervised learning methods with scarce labels in the CIFAR-10 dataset. In a complementary approach, Nullspace Tuning on equivalence classes offers t
57#
發(fā)表于 2025-3-31 10:56:51 | 只看該作者
Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CTdaries and scarce supervised training data than contrast-enhanced CT (CTce) segmentation. To alleviate manual labelling work of radiologists, we generate training samples for 3D U-Net segmentation network by transforming the existing CTce liver segmentation dataset to the non-contrast CT styled volu
58#
發(fā)表于 2025-3-31 14:51:31 | 只看該作者
Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for, but these are known to lack robustness when anatomic differences between atlases and subjects are large. To improve the localization robustness, we propose a novel two-stage deep learning (DL) framework, where the first stage identifies and crops the thalamus regions from the whole brain MRI and t
59#
發(fā)表于 2025-3-31 20:43:23 | 只看該作者
A Case Study of Transfer of?Lesion-Knowledgeng with the acknowledged ability of neural-network methods to analyse image data, would suggest that accurate models for lesions can now be constructed by a deep neural network. However an important difficulty arises from the lack of annotated images from various parts of the body. Our proposed appr
60#
發(fā)表于 2025-4-1 01:35:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-7 02:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盈江县| 正蓝旗| 彭泽县| 祁阳县| 陈巴尔虎旗| 扶沟县| 泰宁县| 和龙市| 淮南市| 康马县| 武城县| 抚宁县| 汝阳县| 成安县| 丹阳市| 都江堰市| 隆德县| 成安县| 乐清市| 长垣县| 石渠县| 稷山县| 横峰县| 大方县| 山阴县| 扎赉特旗| 荔浦县| 巍山| 石楼县| 慈溪市| 康乐县| 宜川县| 沭阳县| 鄂托克前旗| 江津市| 罗甸县| 陕西省| 平谷区| 阳高县| 分宜县| 额尔古纳市|