找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpretable and Annotation-Efficient Learning for Medical Image Computing; Third International Jaime Cardoso,Hien Van Nguyen,Samaneh Abb

[復(fù)制鏈接]
查看: 14942|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:20:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing
副標(biāo)題Third International
編輯Jaime Cardoso,Hien Van Nguyen,Samaneh Abbasi
視頻videohttp://file.papertrans.cn/473/472707/472707.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Interpretable and Annotation-Efficient Learning for Medical Image Computing; Third International  Jaime Cardoso,Hien Van Nguyen,Samaneh Abb
描述.This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020...The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; bioinformatics; classification; computer vision; deep learning; image analysis; i
版次1
doihttps://doi.org/10.1007/978-3-030-61166-8
isbn_softcover978-3-030-61165-1
isbn_ebook978-3-030-61166-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing影響因子(影響力)




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing影響因子(影響力)學(xué)科排名




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing網(wǎng)絡(luò)公開度




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing被引頻次




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing被引頻次學(xué)科排名




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing年度引用




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing年度引用學(xué)科排名




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing讀者反饋




書目名稱Interpretable and Annotation-Efficient Learning for Medical Image Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:33:53 | 只看該作者
Conference proceedings 2020 Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd Internatio
地板
發(fā)表于 2025-3-22 06:45:09 | 只看該作者
Projective Latent Interventions for Understanding and Fine-Tuning Classifierss allow domain experts to control the latent decision space in an intuitive way in order to better match their expectations. For instance, the performance for specific pairs of classes can be enhanced by manually separating the class clusters in the embedding. We evaluate our technique on a real-world scenario in fetal ultrasound imaging.
5#
發(fā)表于 2025-3-22 09:02:57 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:38 | 只看該作者
7#
發(fā)表于 2025-3-22 18:42:00 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:27 | 只看該作者
Eren Bora Yilmaz,Alexander Oliver Mader,Tobias Fricke,Jaime Pe?a,Claus-Christian Glüer,Carsten Meyerh Unl?slichkeit in Wasser und Aussehen lebhaft an das Wismuthydrat erinnern. Aus der Stellung des Arsens im periodischen System über dem Antimon ergibt sich ohne weiteres, da? die Oxyde und Sulfide des Arsens st?rker sauren Charakter haben als die gleichen Verbindungen des Antimons. Die Arsenoxyde u
9#
發(fā)表于 2025-3-23 05:10:31 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东阳市| 乐陵市| 台中县| 绥宁县| 舒兰市| 磴口县| 宁陕县| 黄大仙区| 定州市| 西峡县| 黔南| 鹤庆县| 海南省| 泸州市| 黔东| 融水| 唐海县| 苍溪县| 拉孜县| 西乌珠穆沁旗| 吉安县| 松桃| 泸定县| 威远县| 富锦市| 泰兴市| 富宁县| 武义县| 潜江市| 民勤县| 汕尾市| 天峻县| 沅江市| 泰顺县| 海原县| 桃源县| 井研县| 汕尾市| 兰溪市| 营山县| 苏尼特左旗|