找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpolating Cubic Splines; Gary D. Knott Book 2000 Springer Science+Business Media New York 2000 Approximation.Approximation theory.Spli

[復(fù)制鏈接]
樓主: hearken
41#
發(fā)表于 2025-3-28 17:15:17 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:21 | 只看該作者
,Λ-Spline Curves With Range Dimension ,nctions which map.to ., such that no two functions in Λ are identical on [. ., . .]. Given the real values . ≤ . ≤ … ≤ ., the parametric function .(.) defined on the interval [., .] is called a Λ- . ., .,…, . if .(.) = .(. ? .?1) for . ≤ . ≤ . and 1 ≤ . ≤ . ? 1, where each function . is a function i
43#
發(fā)表于 2025-3-29 02:47:04 | 只看該作者
44#
發(fā)表于 2025-3-29 05:33:42 | 只看該作者
45#
發(fā)表于 2025-3-29 09:11:21 | 只看該作者
Smoothing Splines,rom the graph of some unknown function . : . → . such that . = .(.) + ∈. for . = 1,… , .. If the form of the function . were known, except for some unknown parameter values, we could then determine those values by the least squares method, where the desired parameter values are those parameter value
46#
發(fā)表于 2025-3-29 12:46:31 | 只看該作者
Geometrically Continuous Cubic Splines,try and exit tangent vectors at each point ., where each pair may have differing magnitudes, but the same direction. It is common to call a tangent vector geometrically continuous curve a . curve, in the same way that a tangent vector algebraically continuous curve is commonly called a . curve. A .
47#
發(fā)表于 2025-3-29 17:17:54 | 只看該作者
Cubic Spline Vector Space Basis Functions,φ. where α.,… , α. ∈ .. For the case of a vector space of cubic spline functions, some basis sets can be developed by focusing on a representation of the cubic polynomial spline segments as component-wise linear combinations of fixed functions.
48#
發(fā)表于 2025-3-29 22:18:06 | 只看該作者
Rational Cubic Splines,c polynomial cannot represent other conic section curves such as a circular arc, an elliptic arc, or a segment of an hyperbola. It is an interesting fact, however, that an elliptic or hyperbolic arc in . can be parametrically represented by three component functions .(.), .(.), and .(.), where each
49#
發(fā)表于 2025-3-30 01:39:46 | 只看該作者
50#
發(fā)表于 2025-3-30 04:09:15 | 只看該作者
Tensor Product Surface Splines,ic surface splines analogous to the cubic space curve splines that we studied above. Again we want to construct spline surfaces that contain given points in 3-space, and, generally, that have specified directional derivatives or directional tangent vectors at these given interpolation points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 广平县| 钟山县| 竹山县| 礼泉县| 若尔盖县| 昭觉县| 阜新市| 敦化市| 三穗县| 永登县| 河源市| 剑河县| 二连浩特市| 乐业县| 黑山县| 琼海市| 长岭县| 绥宁县| 卓尼县| 漾濞| 昌黎县| 池州市| 铜梁县| 安西县| 科技| 双城市| 灵寿县| 教育| 汉沽区| 车致| 涞源县| 仲巴县| 肇州县| 淄博市| 商丘市| 民权县| 天镇县| 永宁县| 元阳县| 垫江县|