找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpolating Cubic Splines; Gary D. Knott Book 2000 Springer Science+Business Media New York 2000 Approximation.Approximation theory.Spli

[復(fù)制鏈接]
查看: 41324|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:19:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Interpolating Cubic Splines
編輯Gary D. Knott
視頻videohttp://file.papertrans.cn/473/472678/472678.mp4
概述Includes supplementary material:
叢書(shū)名稱Progress in Computer Science and Applied Logic
圖書(shū)封面Titlebook: Interpolating Cubic Splines;  Gary D. Knott Book 2000 Springer Science+Business Media New York 2000 Approximation.Approximation theory.Spli
描述A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi- cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi- nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav- els side-by-side with the art of automobile design, sail construc
出版日期Book 2000
關(guān)鍵詞Approximation; Approximation theory; Splines; algorithms; architecture; computer graphics; computer-aided
版次1
doihttps://doi.org/10.1007/978-1-4612-1320-8
isbn_softcover978-1-4612-7092-8
isbn_ebook978-1-4612-1320-8Series ISSN 2297-0576 Series E-ISSN 2297-0584
issn_series 2297-0576
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書(shū)目名稱Interpolating Cubic Splines影響因子(影響力)




書(shū)目名稱Interpolating Cubic Splines影響因子(影響力)學(xué)科排名




書(shū)目名稱Interpolating Cubic Splines網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Interpolating Cubic Splines網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Interpolating Cubic Splines被引頻次




書(shū)目名稱Interpolating Cubic Splines被引頻次學(xué)科排名




書(shū)目名稱Interpolating Cubic Splines年度引用




書(shū)目名稱Interpolating Cubic Splines年度引用學(xué)科排名




書(shū)目名稱Interpolating Cubic Splines讀者反饋




書(shū)目名稱Interpolating Cubic Splines讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:54 | 只看該作者
Quadratic Space Curve Based Cubic Splines,Show that a quadratic space curve .(.) = . + . + . is a planar curve, and thus prove that a cubic is the lowest degree polynomial space curve which has non-zero torsion.
板凳
發(fā)表于 2025-3-22 00:33:58 | 只看該作者
https://doi.org/10.1007/978-1-4612-1320-8Approximation; Approximation theory; Splines; algorithms; architecture; computer graphics; computer-aided
地板
發(fā)表于 2025-3-22 05:08:44 | 只看該作者
Gary D. KnottIncludes supplementary material:
5#
發(fā)表于 2025-3-22 11:33:20 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:48:01 | 只看該作者
Function and Space Curve Interpolation, .,…,. . in . or ., perhaps along given associated directions ., .,…, . ., with |.| ≠ 0 for . = 1, 2,…, .. Indeed, we could elaborate the interpretation of the direction vectors, .…, ., so that . = 0 would be taken to specify a sharp corner or . at ..
8#
發(fā)表于 2025-3-22 21:53:17 | 只看該作者
2D-Function Interpolation, that of 2D-functional interpolation: given points of the graph of an otherwise unknown 2D-function ., we are interested in constructing another 2D-function which interpolates the given points and which serves as an estimate of the function . .
9#
發(fā)表于 2025-3-23 02:53:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:10:28 | 只看該作者
Cubic Spline Vector Space Basis Functions,φ. where α.,… , α. ∈ .. For the case of a vector space of cubic spline functions, some basis sets can be developed by focusing on a representation of the cubic polynomial spline segments as component-wise linear combinations of fixed functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夹江县| 乡城县| 靖远县| 鲁山县| 互助| 屏东县| 山阴县| 肇源县| 沂水县| 平乡县| 阳江市| 柳林县| 澎湖县| 辽源市| 普兰县| 连平县| 梁河县| 常州市| 民权县| 金秀| 武定县| 淮阳县| 贵溪市| 中阳县| 安义县| 古蔺县| 广平县| 内乡县| 丹棱县| 临江市| 全州县| 施甸县| 吉隆县| 鄂温| 营口市| 巨野县| 隆子县| 阿勒泰市| 杭锦后旗| 祁门县| 湘阴县|