找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transform Techniques for Green‘s Function; Kazumi Watanabe Book 2015Latest edition Springer International Publishing Switzerland

[復(fù)制鏈接]
樓主: opioid
11#
發(fā)表于 2025-3-23 10:45:45 | 只看該作者
Kazumi WatanabeA valuable reference book for engineers.Includes full descriptions of the Cagniard-de Hoop technique and the branch cut for square root functions.Employs a unified mathematical technique as the soluti
12#
發(fā)表于 2025-3-23 17:32:09 | 只看該作者
13#
發(fā)表于 2025-3-23 21:00:53 | 只看該作者
https://doi.org/10.1007/978-3-319-17455-6Cagniard‘s-de Hoop Techniques; Exact Solutions; Green‘s Function and Dyadic; Integral Transform; Wave Ph
14#
發(fā)表于 2025-3-23 23:45:23 | 只看該作者
,Green’s Dyadic for an Isotropic Elastic Solid,onses, are obtained by the integral transform method. The time-harmonic response is derived by the convolution integral of the impulsive response without solving the differential equations for the time-harmonic source. In the last section, two exact closed form Green‘s functions for torsional waves are also presented.
15#
發(fā)表于 2025-3-24 04:11:44 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:43 | 只看該作者
Definition of Integral Transforms and Distributions,unctions which are frequently used as the source function, and a concise introduction of the branch cut for a multi-valued square root function. The multiple integral transforms and their notations are also explained. The newly added Sect. 1.3 explains closely how to introduce the branch cut for the
17#
發(fā)表于 2025-3-24 12:03:10 | 只看該作者
,Green’s Functions for Laplace and Wave Equations,ique of the integral transform method is demonstrated. Especially, in the case of the time-harmonic response for the 1 and 2D wave equations, the integration path for the inversion integral is discussed in detail with use of the results in Sect. 1.3. At the end of the chapter, the obtained Green‘s f
18#
發(fā)表于 2025-3-24 16:51:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:26 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:51 | 只看該作者
,Green’s Functions for Beam and Plate,eam and plate are discussed. Two dynamic responses, the impulsive and time-harmonic responses, are derived by the integral transform method. In addition to the tabulated integration formulas, an inversion integral is evaluated by the application of the complex integral theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永城市| 清涧县| 太仓市| 太和县| 江陵县| 富宁县| 睢宁县| 民乐县| 土默特右旗| 宿松县| 普陀区| 潞城市| 金沙县| 汨罗市| 巴彦淖尔市| 教育| 拉萨市| 汝南县| 永和县| 漳浦县| 津南区| 墨竹工卡县| 沈阳市| 正安县| 木兰县| 新兴县| 昌图县| 安新县| 山东省| 安岳县| 侯马市| 新化县| 蓝田县| 梓潼县| 城市| 札达县| 溧水县| 高邮市| 清丰县| 东乡族自治县| 湟源县|