找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transform Techniques for Green‘s Function; Kazumi Watanabe Book 2015Latest edition Springer International Publishing Switzerland

[復(fù)制鏈接]
查看: 36020|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:13:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Integral Transform Techniques for Green‘s Function
編輯Kazumi Watanabe
視頻videohttp://file.papertrans.cn/469/468341/468341.mp4
概述A valuable reference book for engineers.Includes full descriptions of the Cagniard-de Hoop technique and the branch cut for square root functions.Employs a unified mathematical technique as the soluti
叢書名稱Lecture Notes in Applied and Computational Mechanics
圖書封面Titlebook: Integral Transform Techniques for Green‘s Function;  Kazumi Watanabe Book 2015Latest edition Springer International Publishing Switzerland
描述.This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full..This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral..
出版日期Book 2015Latest edition
關(guān)鍵詞Cagniard‘s-de Hoop Techniques; Exact Solutions; Green‘s Function and Dyadic; Integral Transform; Wave Ph
版次2
doihttps://doi.org/10.1007/978-3-319-17455-6
isbn_softcover978-3-319-34587-1
isbn_ebook978-3-319-17455-6Series ISSN 1613-7736 Series E-ISSN 1860-0816
issn_series 1613-7736
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Integral Transform Techniques for Green‘s Function影響因子(影響力)




書目名稱Integral Transform Techniques for Green‘s Function影響因子(影響力)學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function網(wǎng)絡(luò)公開度




書目名稱Integral Transform Techniques for Green‘s Function網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function被引頻次




書目名稱Integral Transform Techniques for Green‘s Function被引頻次學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function年度引用




書目名稱Integral Transform Techniques for Green‘s Function年度引用學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function讀者反饋




書目名稱Integral Transform Techniques for Green‘s Function讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:47 | 只看該作者
Cagniard-de Hoop Technique,ier inversion integral is converted to the form of Laplace transform integral and then its Laplace inversion is carried out by inspection without using any integration formula. The Green‘s function for a single SH-wave and the Green‘s dyadics for coupled P, SV and SH-waves are obtained exactly.
板凳
發(fā)表于 2025-3-22 01:24:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:50 | 只看該作者
Book 2015Latest editionuare root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral..
5#
發(fā)表于 2025-3-22 11:47:52 | 只看該作者
Definition of Integral Transforms and Distributions, The discussion on the argument of the root function along the branch cut is unique and instructive for the reader, when he/she starts to apply the complex integral to the inverse transform. The last short comment lists some important formula books which are crucial for the inverse transform, i.e. the evaluation of the inversion integral.
6#
發(fā)表于 2025-3-22 13:42:33 | 只看該作者
7#
發(fā)表于 2025-3-22 18:57:53 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:45 | 只看該作者
Acoustic Wave in a Uniform Flow, obtain the time-harmonic response. An application technique of the complex integral is also demonstrated in order to transform an infinite integral along the complex line to that along the real axis in the complex plane. It enabled us to apply the tabulated integration formula.
9#
發(fā)表于 2025-3-23 02:53:33 | 只看該作者
978-3-319-34587-1Springer International Publishing Switzerland 2015
10#
發(fā)表于 2025-3-23 08:14:07 | 只看該作者
Integral Transform Techniques for Green‘s Function978-3-319-17455-6Series ISSN 1613-7736 Series E-ISSN 1860-0816
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆城县| 万全县| 招远市| 仪陇县| 林西县| 揭西县| 柳江县| 平远县| 手游| 灵寿县| 府谷县| 垦利县| 舒兰市| 廉江市| 泰和县| 武乡县| 景宁| 金寨县| 阿图什市| 阿勒泰市| 神农架林区| 广东省| 治多县| 建平县| 康保县| 焦作市| 阆中市| 浪卡子县| 闸北区| 大新县| 福泉市| 黔西| 盘山县| 衡阳市| 中牟县| 泗水县| 蚌埠市| 盐源县| 资阳市| 延川县| 镇安县|