找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Geometry and Convolution Equations; V. V. Volchkov Book 2003 Springer Science+Business Media Dordrecht 2003 Fourier transform.con

[復(fù)制鏈接]
樓主: FORAY
31#
發(fā)表于 2025-3-26 23:17:16 | 只看該作者
32#
發(fā)表于 2025-3-27 01:07:43 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:34 | 只看該作者
Behavior of Solutions of Convolution Equation at InfinityLet . ∈ .′(?.), . ≠ 0 and . ∈ ..(?.) be a nonzero function satisfying the equation . Then . cannot decrease rapidly on infinity. For instance, if . ? .(?.), from (3.1), (1.6.2) we have .. Since . is an entire function the set . is dense nowhere in ?.. As . is continuous we obtain . = 0.
34#
發(fā)表于 2025-3-27 12:09:08 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:27 | 只看該作者
Comments and Open ProblemsConvolution equations and related questions have been studied by many authors (see the survey [B31] containing an extensive bibliography, and also [N1], [V40], [V44], [V49]–[V51], [T3]).
36#
發(fā)表于 2025-3-27 18:10:19 | 只看該作者
37#
發(fā)表于 2025-3-27 22:39:07 | 只看該作者
38#
發(fā)表于 2025-3-28 05:45:21 | 只看該作者
Sets and Mappings. ∈ . with property .. If a set . is subset of . then we write . ? .. We write . = . if . ? . and . ? . Denote by ?, ≠ the negation for the symbols ∈,=, respectively. As usual 0 denotes the empty set. For arbitrary sets . we denote . . = {. ∈ .: . ? .}. If . is a finite set then card . denotes the number of elements of ..
39#
發(fā)表于 2025-3-28 10:00:49 | 只看該作者
Distributionscalled a distribution on ., if for each compact set . ? . there exist a constants . > 0, . ∈ ?. such that . This means that if the sequence .. ∈ ., . = 1, 2,..., converges in . to the function . then <..> → <.> as . → + ∞.
40#
發(fā)表于 2025-3-28 12:21:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 昌江| 扎兰屯市| 顺平县| 长垣县| 丰台区| 富源县| 拉孜县| 克拉玛依市| 秦安县| 温泉县| 弥渡县| 紫阳县| 昌乐县| 华蓥市| 五寨县| 长阳| 前郭尔| 虞城县| 偏关县| 额尔古纳市| 光山县| 海口市| 延安市| 怀化市| 乡宁县| 昔阳县| 池州市| 商河县| 乐清市| 哈密市| 洛浦县| 江达县| 广汉市| 宜兴市| 垣曲县| 杭锦旗| 谷城县| 吴忠市| 永丰县| 尉犁县|