找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Geometry and Convolution Equations; V. V. Volchkov Book 2003 Springer Science+Business Media Dordrecht 2003 Fourier transform.con

[復制鏈接]
查看: 11993|回復: 61
樓主
發(fā)表于 2025-3-21 18:34:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Integral Geometry and Convolution Equations
編輯V. V. Volchkov
視頻videohttp://file.papertrans.cn/469/468308/468308.mp4
圖書封面Titlebook: Integral Geometry and Convolution Equations;  V. V. Volchkov Book 2003 Springer Science+Business Media Dordrecht 2003 Fourier transform.con
描述Integral geometry deals with the problem of determining functions by their integrals over given families of sets. These integrals de?ne the corresponding integraltransformandoneofthemainquestionsinintegralgeometryaskswhen this transform is injective. On the other hand, when we work with complex measures or forms, operators appear whose kernels are non-trivial but which describe important classes of functions. Most of the questions arising here relate, in one way or another, to the convolution equations. Some of the well known publications in this ?eld include the works by J. Radon, F. John, J. Delsarte, L. Zalcman, C. A. Berenstein, M. L. Agranovsky and recent monographs by L. H¨ ormander and S. Helgason. Until recently research in this area was carried out mostly using the technique of the Fourier transform and corresponding methods of complex analysis. In recent years the present author has worked out an essentially di?erent methodology based on the description of various function spaces in terms of - pansions in special functions, which has enabled him to establish best possible results in several well known problems.
出版日期Book 2003
關鍵詞Fourier transform; convolution; distribution; harmonic analysis; measure theory; partial differential equ
版次1
doihttps://doi.org/10.1007/978-94-010-0023-9
isbn_softcover978-94-010-3999-4
isbn_ebook978-94-010-0023-9
copyrightSpringer Science+Business Media Dordrecht 2003
The information of publication is updating

書目名稱Integral Geometry and Convolution Equations影響因子(影響力)




書目名稱Integral Geometry and Convolution Equations影響因子(影響力)學科排名




書目名稱Integral Geometry and Convolution Equations網(wǎng)絡公開度




書目名稱Integral Geometry and Convolution Equations網(wǎng)絡公開度學科排名




書目名稱Integral Geometry and Convolution Equations被引頻次




書目名稱Integral Geometry and Convolution Equations被引頻次學科排名




書目名稱Integral Geometry and Convolution Equations年度引用




書目名稱Integral Geometry and Convolution Equations年度引用學科排名




書目名稱Integral Geometry and Convolution Equations讀者反饋




書目名稱Integral Geometry and Convolution Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:36:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:09:12 | 只看該作者
corresponding integraltransformandoneofthemainquestionsinintegralgeometryaskswhen this transform is injective. On the other hand, when we work with complex measures or forms, operators appear whose kernels are non-trivial but which describe important classes of functions. Most of the questions arisi
地板
發(fā)表于 2025-3-22 04:49:57 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:51 | 只看該作者
V. V. Volchkovlt, dass das Nachhaltigkeitskonzept im Laufe seines Entwicklungsprozesses immer umfassender wurde, indem viele verschiedene Denkans?tze darunter subsumiert wurden, die naturgem?? eine Reihe unterschiedlicher Interessengruppen aufeinander treffen lassen. Die Konsequenz hieraus ist, dass auch 14 Jahre
6#
發(fā)表于 2025-3-22 16:11:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:07:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:38:46 | 只看該作者
V. V. Volchkovrtr?ge durch einzelne Anspruchsgruppen vorgebeugt bzw. begegnet werden kann. Die angels?chsische Literatur fokussiert traditionell auf die Einbindung des Unternehmens in seine Umwelt und auf das Verh?ltnis zwischen Eigentümern und Unternehmensleitung. Aufgrund des im Aktiengesetz vorgeschriebenen Tr
9#
發(fā)表于 2025-3-23 04:41:56 | 只看該作者
Sets and Mappings. ∈ . with property .. If a set . is subset of . then we write . ? .. We write . = . if . ? . and . ? . Denote by ?, ≠ the negation for the symbols ∈,=, respectively. As usual 0 denotes the empty set. For arbitrary sets . we denote . . = {. ∈ .: . ? .}. If . is a finite set then card . denotes the
10#
發(fā)表于 2025-3-23 08:56:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邻水| 桦甸市| 谢通门县| 读书| 綦江县| 哈尔滨市| 县级市| 宣汉县| 呼伦贝尔市| 休宁县| 合山市| 潞城市| 广水市| 峨边| 简阳市| 石楼县| 金沙县| 乌兰察布市| 来安县| 德格县| 宁海县| 三穗县| 蛟河市| 双桥区| 辽源市| 虹口区| 鹿邑县| 泾源县| 焉耆| 松桃| 阳泉市| 宝山区| 巴林右旗| 滨州市| 临澧县| 文昌市| 奉化市| 广德县| 太湖县| 延寿县| 巴林左旗|