找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 22nd International C Mohit Singh,David P. Williamson Conference proceedings 2021 Spring

[復制鏈接]
樓主: intern
41#
發(fā)表于 2025-3-28 15:02:48 | 只看該作者
Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets,if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid . we derive for its convex hull have a number of interesting properties. First, they generalize the well-known (1,?.)-configuration inequali
42#
發(fā)表于 2025-3-28 22:27:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:57:03 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:26 | 只看該作者
On the Recognition of ,-Modular Matrices,value is .. We will succeed in solving this problem in polynomial time unless . possesses a ., that is, . has nonzero . subdeterminants . and . satisfying .. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a p
45#
發(fā)表于 2025-3-29 07:17:31 | 只看該作者
46#
發(fā)表于 2025-3-29 15:02:28 | 只看該作者
47#
發(fā)表于 2025-3-29 19:37:28 | 只看該作者
0302-9743 ace during May 19-21, 2021. The conference was organized by Georgia Institute of Technology and planned to take place it Atlanta, GA, USA, but changed to an online format due to the COVID-19 pandemic.?.The 33 papers included in this book were carefully reviewed and selected from 90 submissions. IPCO
48#
發(fā)表于 2025-3-29 20:00:14 | 只看該作者
Complexity, Exactness, and Rationality in Polynomial Optimization, that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. Lastly, we show that in fixed dimension, the feasibility problem over a set defined by polynomial inequalities is in NP.
49#
發(fā)表于 2025-3-30 01:09:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:20:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平利县| 阳原县| 克什克腾旗| 重庆市| 乌恰县| 岳西县| 旅游| 大厂| 紫金县| 竹北市| 南丰县| 尖扎县| 灵宝市| 社会| 莱西市| 泸西县| 专栏| 齐齐哈尔市| 平定县| 南木林县| 湘潭县| 尉犁县| 富蕴县| 黑山县| 永德县| 班玛县| 朝阳区| 淮南市| 龙口市| 阳谷县| 东平县| 孟州市| 田林县| 定日县| 板桥市| 从江县| 马山县| 开平市| 蓬溪县| 上林县| 泰和县|