找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 22nd International C Mohit Singh,David P. Williamson Conference proceedings 2021 Spring

[復(fù)制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-26 23:55:48 | 只看該作者
32#
發(fā)表于 2025-3-27 01:26:45 | 只看該作者
Complexity, Exactness, and Rationality in Polynomial Optimization,e show that, under some separability conditions, certain cubic polynomially constrained sets admit rational solutions. However, we show in other cases that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. Lastly, we show that in fixed dimension, the feasib
33#
發(fā)表于 2025-3-27 07:15:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:46:50 | 只看該作者
A Finite Time Combinatorial Algorithm for Instantaneous Dynamic Equilibrium Flows,ly select en route currently shortest paths towards their destination. We analyze IDE within the Vickrey bottleneck model, where current travel times along a path consist of the physical travel times plus the sum of waiting times in all the queues along a path. Although IDE have been studied for dec
36#
發(fā)表于 2025-3-27 19:07:25 | 只看該作者
A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polyial matrix) ., where . is a . matrix over a field ., . is an indeterminate, and . is an integer for ., and . is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum perfect bipartite matching problem..The main result of this paper is a combinatorial .
37#
發(fā)表于 2025-3-28 00:00:09 | 只看該作者
On the Implementation and Strengthening of Intersection Cuts for QCQPs,tudied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of .. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for qu
38#
發(fā)表于 2025-3-28 03:38:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:14 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰县| 旅游| 错那县| 嵊泗县| 龙州县| 锦州市| 玉门市| 永登县| 长乐市| 乌兰县| 威信县| 灵武市| 正蓝旗| 深水埗区| 奉贤区| 封开县| 和田市| 营口市| 云南省| 阿鲁科尔沁旗| 开阳县| 宁远县| 望谟县| 桐庐县| 乐陵市| 滨海县| 上林县| 襄垣县| 蚌埠市| 信阳市| 天门市| 怀化市| 大埔县| 九龙县| 韶关市| 梧州市| 南昌市| 宝应县| 明溪县| 珲春市| 仙游县|