找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 22nd International C Mohit Singh,David P. Williamson Conference proceedings 2021 Spring

[復(fù)制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-26 23:55:48 | 只看該作者
32#
發(fā)表于 2025-3-27 01:26:45 | 只看該作者
Complexity, Exactness, and Rationality in Polynomial Optimization,e show that, under some separability conditions, certain cubic polynomially constrained sets admit rational solutions. However, we show in other cases that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. Lastly, we show that in fixed dimension, the feasib
33#
發(fā)表于 2025-3-27 07:15:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:46:50 | 只看該作者
A Finite Time Combinatorial Algorithm for Instantaneous Dynamic Equilibrium Flows,ly select en route currently shortest paths towards their destination. We analyze IDE within the Vickrey bottleneck model, where current travel times along a path consist of the physical travel times plus the sum of waiting times in all the queues along a path. Although IDE have been studied for dec
36#
發(fā)表于 2025-3-27 19:07:25 | 只看該作者
A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polyial matrix) ., where . is a . matrix over a field ., . is an indeterminate, and . is an integer for ., and . is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum perfect bipartite matching problem..The main result of this paper is a combinatorial .
37#
發(fā)表于 2025-3-28 00:00:09 | 只看該作者
On the Implementation and Strengthening of Intersection Cuts for QCQPs,tudied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of .. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for qu
38#
發(fā)表于 2025-3-28 03:38:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:14 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵定县| 汾阳市| 临沧市| 宁国市| 钟祥市| 亳州市| 营口市| 黄平县| 永嘉县| 尖扎县| 莱州市| 甘德县| 高邮市| 香格里拉县| 巴东县| 兰坪| 临沧市| 陵川县| 双流县| 黄骅市| 宜都市| 横山县| 万全县| 应城市| 临高县| 克拉玛依市| 马关县| 凤城市| 淮安市| 武穴市| 德庆县| 攀枝花市| 运城市| 响水县| 综艺| 海城市| 闽清县| 鄂尔多斯市| 陇川县| 台前县| 梅州市|