找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
查看: 12508|回復: 62
樓主
發(fā)表于 2025-3-21 18:36:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Information-Driven Machine Learning
副標題Data Science as an E
編輯Gerald Friedland
視頻videohttp://file.papertrans.cn/467/466021/466021.mp4
概述Tackles the ‘why‘ questions of data science and deep learning.Interdisciplinary approach to model engineering.Information measurements for MLOps, Data drift, bias
圖書封面Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u
描述.This groundbreaking book transcends traditional machine learning approaches by introducing information measurement methodologies that revolutionize the field...Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overcome the ‘black box‘ approach of machine learning by reducing conjectures such as magic numbers (hyper-parameters) or model-type bias. Information-based machine learning enables data quality measurements, a priori task complexity estimations, and reproducible design of data science experiments. The benefits include significant size reduction, increased explainability, and enhanced resilience of models, all contributing to advancing the discipline‘s robustness and credibility...While bridging the gap between machine learning and disciplines such as physics, information theory, and computer engineering, this textbook maintains an accessible and comprehensive style, making complex topics digestible fora broad readership. .Information-Driven Machine Learning. explores the synergistic harmony among these disciplines to enhance our understanding of data science modeling. Instead of solely focusing on the "how," this
出版日期Textbook 2024
關鍵詞machine learning experiments; information theory; information measurements; decision trees; neural netwo
版次1
doihttps://doi.org/10.1007/978-3-031-39477-5
isbn_softcover978-3-031-39479-9
isbn_ebook978-3-031-39477-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Information-Driven Machine Learning影響因子(影響力)




書目名稱Information-Driven Machine Learning影響因子(影響力)學科排名




書目名稱Information-Driven Machine Learning網(wǎng)絡公開度




書目名稱Information-Driven Machine Learning網(wǎng)絡公開度學科排名




書目名稱Information-Driven Machine Learning被引頻次




書目名稱Information-Driven Machine Learning被引頻次學科排名




書目名稱Information-Driven Machine Learning年度引用




書目名稱Information-Driven Machine Learning年度引用學科排名




書目名稱Information-Driven Machine Learning讀者反饋




書目名稱Information-Driven Machine Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:20:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:37 | 只看該作者
地板
發(fā)表于 2025-3-22 07:58:56 | 只看該作者
5#
發(fā)表于 2025-3-22 08:42:57 | 只看該作者
Explainability,the decisions and predictions made by the model (Gilpin et al. (Explaining explanations: An overview of interpretability of machine learning, . pp. 80–89, 2018)). It contrasts with the “black box” concept in machine learning (see Chap. . where even its designers cannot explain why a model arrived at a specific decision.
6#
發(fā)表于 2025-3-22 16:22:54 | 只看該作者
978-3-031-39479-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
7#
發(fā)表于 2025-3-22 21:06:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:44:54 | 只看該作者
http://image.papertrans.cn/i/image/466021.jpg
9#
發(fā)表于 2025-3-23 03:23:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:10:37 | 只看該作者
Meta-Math: Exploring the Limits of Modeling,In this chapter, we will explore mathematical and statistical modeling in general and explore their limits. That is, what can we expect from modeling and what not. What are the limits of the approach we call “modeling”?
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-4 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南开区| 肇州县| 盐津县| 清镇市| 仪陇县| 岫岩| 巴南区| 鸡西市| 盐池县| 夹江县| 永兴县| 祁阳县| 皮山县| 东源县| 林甸县| 新津县| 温州市| 高陵县| 吉水县| 寻乌县| 连南| 九龙县| 三都| 孟津县| 武邑县| 红原县| 彭阳县| 安国市| 长岛县| 和政县| 阿拉善左旗| 扶风县| 凤山市| 砀山县| 普定县| 东丽区| 安国市| 阿克苏市| 渑池县| 盈江县| 乌鲁木齐市|