找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
查看: 12510|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:36:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Information-Driven Machine Learning
副標題Data Science as an E
編輯Gerald Friedland
視頻videohttp://file.papertrans.cn/467/466021/466021.mp4
概述Tackles the ‘why‘ questions of data science and deep learning.Interdisciplinary approach to model engineering.Information measurements for MLOps, Data drift, bias
圖書封面Titlebook: Information-Driven Machine Learning; Data Science as an E Gerald Friedland Textbook 2024 The Editor(s) (if applicable) and The Author(s), u
描述.This groundbreaking book transcends traditional machine learning approaches by introducing information measurement methodologies that revolutionize the field...Stemming from a UC Berkeley seminar on experimental design for machine learning tasks, these techniques aim to overcome the ‘black box‘ approach of machine learning by reducing conjectures such as magic numbers (hyper-parameters) or model-type bias. Information-based machine learning enables data quality measurements, a priori task complexity estimations, and reproducible design of data science experiments. The benefits include significant size reduction, increased explainability, and enhanced resilience of models, all contributing to advancing the discipline‘s robustness and credibility...While bridging the gap between machine learning and disciplines such as physics, information theory, and computer engineering, this textbook maintains an accessible and comprehensive style, making complex topics digestible fora broad readership. .Information-Driven Machine Learning. explores the synergistic harmony among these disciplines to enhance our understanding of data science modeling. Instead of solely focusing on the "how," this
出版日期Textbook 2024
關(guān)鍵詞machine learning experiments; information theory; information measurements; decision trees; neural netwo
版次1
doihttps://doi.org/10.1007/978-3-031-39477-5
isbn_softcover978-3-031-39479-9
isbn_ebook978-3-031-39477-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Information-Driven Machine Learning影響因子(影響力)




書目名稱Information-Driven Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Information-Driven Machine Learning網(wǎng)絡(luò)公開度




書目名稱Information-Driven Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Information-Driven Machine Learning被引頻次




書目名稱Information-Driven Machine Learning被引頻次學(xué)科排名




書目名稱Information-Driven Machine Learning年度引用




書目名稱Information-Driven Machine Learning年度引用學(xué)科排名




書目名稱Information-Driven Machine Learning讀者反饋




書目名稱Information-Driven Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:37 | 只看該作者
地板
發(fā)表于 2025-3-22 07:58:56 | 只看該作者
5#
發(fā)表于 2025-3-22 08:42:57 | 只看該作者
Explainability,the decisions and predictions made by the model (Gilpin et al. (Explaining explanations: An overview of interpretability of machine learning, . pp. 80–89, 2018)). It contrasts with the “black box” concept in machine learning (see Chap. . where even its designers cannot explain why a model arrived at a specific decision.
6#
發(fā)表于 2025-3-22 16:22:54 | 只看該作者
978-3-031-39479-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
7#
發(fā)表于 2025-3-22 21:06:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:44:54 | 只看該作者
http://image.papertrans.cn/i/image/466021.jpg
9#
發(fā)表于 2025-3-23 03:23:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:10:37 | 只看該作者
Meta-Math: Exploring the Limits of Modeling,In this chapter, we will explore mathematical and statistical modeling in general and explore their limits. That is, what can we expect from modeling and what not. What are the limits of the approach we call “modeling”?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-4 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 娄烦县| 汝州市| 枣庄市| 德州市| 大新县| 平利县| 巴塘县| 普兰店市| 紫金县| 揭东县| 正阳县| 孟州市| 肇源县| 顺义区| 浦城县| 胶州市| 五河县| 阿克陶县| 崇义县| 平武县| 南宫市| 商河县| 咸丰县| 神农架林区| 阳曲县| 潍坊市| 德安县| 天长市| 祁门县| 固阳县| 海兴县| 临漳县| 拉萨市| 海宁市| 常熟市| 左权县| 百色市| 望江县| 康乐县| 安远县|