找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional Lie Algebras; An Introduction Victor G. Kac Book 1983 Springer Science+Business Media New York 1983 cls.differential e

[復(fù)制鏈接]
樓主: FLUX
31#
發(fā)表于 2025-3-26 22:39:29 | 只看該作者
https://doi.org/10.1007/978-1-4757-1382-4cls; differential equation; invariant; partial differential equation; combinatorics
32#
發(fā)表于 2025-3-27 01:15:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:51 | 只看該作者
Affine Lie algebras: the realization (case k=2 or 3). Application to the classification of finite o polynomial maps from it ?. to a simple finite-dimensional Lie algebra with the action of a finite cyclic group. As a side result of this construction we deduce a nice description of the finite order automorphisms of a simple finite-dimensional Lie algebra, and, in particular, the classification of symmetric spaces.
34#
發(fā)表于 2025-3-27 12:46:54 | 只看該作者
35#
發(fā)表于 2025-3-27 14:21:06 | 只看該作者
The principal realization of the basic representation. Application to the KdV-type hierarchies of ntly in terms of certain (infinite order) differential operators in infinitely many indeterminates, called the vertex operators. The so-called principal Heisenberg subalgebra s of g(.) plays a crucial role in this construction. In a similar fashion, we construct representations of affine Lie algebras of infinite rank.
36#
發(fā)表于 2025-3-27 19:28:07 | 只看該作者
37#
發(fā)表于 2025-3-27 23:49:01 | 只看該作者
Real and imaginary roots,In this chapter we give an explicit description of the root system ? of a Kac-Moody algebra g(A). Our main instrument is the notion of an imaginary root, which has no counterpart in the finite-dimensional theory.
38#
發(fā)表于 2025-3-28 03:25:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:51:48 | 只看該作者
Integrable highest weight modules over affine Lie algebras. Application to ,-function identities,In the last three chapters we developed a representation theory of arbitrary Kac-Moody algebras. From now on we turn to the special case of affine Lie algebras.
40#
發(fā)表于 2025-3-28 12:20:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 02:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 武强县| 浮山县| 永德县| 贵港市| 宣化县| 吉水县| 巢湖市| 台南市| 托里县| 西平县| 黄浦区| 盐津县| 信丰县| 兰坪| 泗洪县| 玉田县| 浠水县| 汾阳市| 襄樊市| 灯塔市| 八宿县| 无棣县| 西宁市| 绍兴县| 通山县| 岗巴县| 南汇区| 广宁县| 和平区| 漳浦县| 廉江市| 新和县| 张家口市| 安丘市| 双峰县| 潞城市| 满城县| 奈曼旗| 海林市| 永丰县|