找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional K?hler Manifolds; Alan Huckleberry,Tilmann Wurzbacher Book 2001 Springer Basel AG 2001 Complex analysis.Geometry.Matr

[復(fù)制鏈接]
樓主: LANK
21#
發(fā)表于 2025-3-25 06:50:54 | 只看該作者
1661-237X of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Bor978-3-7643-6602-5978-3-0348-8227-9Series ISSN 1661-237X Series E-ISSN 2296-5041
22#
發(fā)表于 2025-3-25 10:58:15 | 只看該作者
Borel-Weil Theory for Loop Groups,re of a Lie group modeled over the Frechet space .of smooth loops with values in the Lie algebra of .. These notes grew out of a reworking of the proof of the Borel-Weil theory for loop groups as it is presented in the book of Pressley and Segal (.). Our main objective is to develop the techniques w
23#
發(fā)表于 2025-3-25 11:42:45 | 只看該作者
Coadjoint Representation of Virasoro-type Lie Algebras and Differential Operators on ensor-densitiejoint representation of the Virasoro group to the Diff(S.)-action on the space of Sturm-Liouville operators was discovered by A.A. Kirillov and G. Segal. This deep and fruitful result relates this topic to the classical problems of projective differential geometry (linear differential operators, pro
24#
發(fā)表于 2025-3-25 18:06:51 | 只看該作者
From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques,e information on the original gauge theory. The geometric framework underlying a gauge field theory is essentially that of an infinite dimensional Lie group ., the gauge group, acting on an infinite dimensional manifold, the manifold of paths .. Here we shall consider a setting in which this group a
25#
發(fā)表于 2025-3-25 21:01:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:33:40 | 只看該作者
27#
發(fā)表于 2025-3-26 05:48:14 | 只看該作者
28#
發(fā)表于 2025-3-26 10:09:05 | 只看該作者
Karl-Hermann Neebre, to justify or explain our actions, and to guide us through life. Telling stories enables us to maintain or make, and sometimes sever, connections with a past and lay foundations for the future. It is through our story telling that we construct a sense of place, a sense of self and a sense of pur
29#
發(fā)表于 2025-3-26 15:30:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 14:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐河县| 略阳县| 林州市| 和静县| 专栏| 舟山市| 青州市| 揭东县| 农安县| 天峻县| 德江县| 黄龙县| 西乡县| 高密市| 博野县| 苏尼特右旗| 蓝田县| 满洲里市| 郯城县| 麻城市| 斗六市| 龙山县| 铜鼓县| 灯塔市| 新营市| 黔南| 隆昌县| 雷州市| 岳池县| 东方市| 舟曲县| 道孚县| 营口市| 恩平市| 介休市| 鹿邑县| 保山市| 宿州市| 延川县| 安图县| 伊通|