找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Dimensional K?hler Manifolds; Alan Huckleberry,Tilmann Wurzbacher Book 2001 Springer Basel AG 2001 Complex analysis.Geometry.Matr

[復(fù)制鏈接]
查看: 45520|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:06:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Infinite Dimensional K?hler Manifolds
編輯Alan Huckleberry,Tilmann Wurzbacher
視頻videohttp://file.papertrans.cn/465/464625/464625.mp4
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Infinite Dimensional K?hler Manifolds;  Alan Huckleberry,Tilmann Wurzbacher Book 2001 Springer Basel AG 2001 Complex analysis.Geometry.Matr
描述Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional K?hler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Bor
出版日期Book 2001
關(guān)鍵詞Complex analysis; Geometry; Matrix; Monodromy; Tensor; curvature; diffeomorphism; differential geometry; gro
版次1
doihttps://doi.org/10.1007/978-3-0348-8227-9
isbn_softcover978-3-7643-6602-5
isbn_ebook978-3-0348-8227-9Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 2001
The information of publication is updating

書目名稱Infinite Dimensional K?hler Manifolds影響因子(影響力)




書目名稱Infinite Dimensional K?hler Manifolds影響因子(影響力)學(xué)科排名




書目名稱Infinite Dimensional K?hler Manifolds網(wǎng)絡(luò)公開度




書目名稱Infinite Dimensional K?hler Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Infinite Dimensional K?hler Manifolds被引頻次




書目名稱Infinite Dimensional K?hler Manifolds被引頻次學(xué)科排名




書目名稱Infinite Dimensional K?hler Manifolds年度引用




書目名稱Infinite Dimensional K?hler Manifolds年度引用學(xué)科排名




書目名稱Infinite Dimensional K?hler Manifolds讀者反饋




書目名稱Infinite Dimensional K?hler Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:13:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:41:48 | 只看該作者
Book 2001r the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional K?hler manifolds and associated group actions which grew out of a DMV-S
地板
發(fā)表于 2025-3-22 04:36:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:25:36 | 只看該作者
6#
發(fā)表于 2025-3-22 13:00:57 | 只看該作者
978-3-7643-6602-5Springer Basel AG 2001
7#
發(fā)表于 2025-3-22 18:51:22 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:44 | 只看該作者
Introduction to Group Actions in Symplectic and Complex Geometry,In this preparatory chapter certain basic results on differentiable manifolds are outlined. Standard references should include . and ..
9#
發(fā)表于 2025-3-23 02:54:37 | 只看該作者
10#
發(fā)表于 2025-3-23 07:59:20 | 只看該作者
Oberwolfach Seminarshttp://image.papertrans.cn/i/image/464625.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌乐县| 三门县| 通许县| 惠来县| 阜新市| 汤原县| 新晃| 昌都县| 班戈县| 文昌市| 庆安县| 错那县| 惠水县| 建宁县| 莫力| 溆浦县| 密云县| 武隆县| 孙吴县| 丰都县| 镇宁| 榆树市| 那坡县| 康保县| 社旗县| 昆明市| 响水县| 阳山县| 石林| 阳城县| 沂南县| 金堂县| 左权县| 枞阳县| 乐山市| 石景山区| 芒康县| 镇坪县| 辽阳市| 大厂| 潜江市|