找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘

[復(fù)制鏈接]
查看: 29472|回復(fù): 49
樓主
發(fā)表于 2025-3-21 18:59:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hyperparameter Tuning for Machine and Deep Learning with R
副標(biāo)題A Practical Guide
編輯Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann
視頻videohttp://file.papertrans.cn/431/430672/430672.mp4
概述Provides hands-on examples that illustrate how hyperparameter tuning can be applied in industry and academia.Gives deep insights into the working mechanisms of machine learning and deep learning.This
圖書封面Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘
描述.This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.?The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. ..The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Hyperparameter Tuning; Hyperparameters; Tuning; Deep Neural Networks; Reinforcement Learning; Machine Lea
版次1
doihttps://doi.org/10.1007/978-981-19-5170-1
isbn_softcover978-981-19-5172-5
isbn_ebook978-981-19-5170-1
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書目名稱Hyperparameter Tuning for Machine and Deep Learning with R影響因子(影響力)




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R影響因子(影響力)學(xué)科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R網(wǎng)絡(luò)公開度




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R被引頻次




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R被引頻次學(xué)科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R年度引用




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R年度引用學(xué)科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R讀者反饋




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:10:47 | 只看該作者
Thomas Bartz-Beielstein,Olaf Mersmann,Sowmya Chandrasekaran
地板
發(fā)表于 2025-3-22 05:14:12 | 只看該作者
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach,Martin Zaefferer
5#
發(fā)表于 2025-3-22 09:07:06 | 只看該作者
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach
6#
發(fā)表于 2025-3-22 16:17:52 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:21:22 | 只看該作者
ue distribution of CA and tyrosinase was analyzed by in situ hybridization and RT-PCR. The effects of AcPase I on CaCO. crystal formation were studied in vitro. Taken together, these results revealed the important functions and features of enzymes in ., which would have important roles to further un
9#
發(fā)表于 2025-3-23 02:05:43 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松潘县| 浮山县| 韶山市| 宣城市| 井冈山市| 长乐市| 浮山县| 淮北市| 苗栗市| 南木林县| 射阳县| 栾川县| 甘泉县| 吕梁市| 行唐县| 襄城县| 卢氏县| 旬阳县| 乌什县| 高邑县| 松潘县| 尚志市| 文安县| 勐海县| 凤城市| 都江堰市| 山阳县| 克山县| 昌宁县| 厦门市| 克什克腾旗| 洮南市| 铜梁县| 泰兴市| 阳山县| 卢湾区| 云梦县| 陇南市| 广宗县| 进贤县| 柳江县|