找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘

[復制鏈接]
查看: 29478|回復: 49
樓主
發(fā)表于 2025-3-21 18:59:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hyperparameter Tuning for Machine and Deep Learning with R
副標題A Practical Guide
編輯Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann
視頻videohttp://file.papertrans.cn/431/430672/430672.mp4
概述Provides hands-on examples that illustrate how hyperparameter tuning can be applied in industry and academia.Gives deep insights into the working mechanisms of machine learning and deep learning.This
圖書封面Titlebook: Hyperparameter Tuning for Machine and Deep Learning with R; A Practical Guide Eva Bartz,Thomas Bartz-Beielstein,Olaf Mersmann Book‘‘‘‘‘‘‘‘
描述.This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.?The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. ..The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Hyperparameter Tuning; Hyperparameters; Tuning; Deep Neural Networks; Reinforcement Learning; Machine Lea
版次1
doihttps://doi.org/10.1007/978-981-19-5170-1
isbn_softcover978-981-19-5172-5
isbn_ebook978-981-19-5170-1
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書目名稱Hyperparameter Tuning for Machine and Deep Learning with R影響因子(影響力)




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R影響因子(影響力)學科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R網(wǎng)絡公開度




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R網(wǎng)絡公開度學科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R被引頻次




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R被引頻次學科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R年度引用




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R年度引用學科排名




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R讀者反饋




書目名稱Hyperparameter Tuning for Machine and Deep Learning with R讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:10:47 | 只看該作者
Thomas Bartz-Beielstein,Olaf Mersmann,Sowmya Chandrasekaran
地板
發(fā)表于 2025-3-22 05:14:12 | 只看該作者
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach,Martin Zaefferer
5#
發(fā)表于 2025-3-22 09:07:06 | 只看該作者
Thomas Bartz-Beielstein,Sowmya Chandrasekaran,Frederik Rehbach
6#
發(fā)表于 2025-3-22 16:17:52 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:21:22 | 只看該作者
ue distribution of CA and tyrosinase was analyzed by in situ hybridization and RT-PCR. The effects of AcPase I on CaCO. crystal formation were studied in vitro. Taken together, these results revealed the important functions and features of enzymes in ., which would have important roles to further un
9#
發(fā)表于 2025-3-23 02:05:43 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
洪洞县| 共和县| 昆明市| 墨江| 察雅县| 渑池县| 华亭县| 杂多县| 静安区| 焦作市| 合江县| 青海省| 莲花县| 上林县| 建始县| 平安县| 会宁县| 敖汉旗| 福建省| 将乐县| 双鸭山市| 句容市| 扬中市| 宽甸| 长武县| 盐亭县| 新昌县| 正镶白旗| 隆尧县| 平谷区| 吉木萨尔县| 如东县| 峨边| 缙云县| 留坝县| 喀喇沁旗| 紫金县| 峨边| 三门县| 苍山县| 宕昌县|