找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergeometric Orthogonal Polynomials and Their q-Analogues; Roelof Koekoek,Peter A. Lesky,René F. Swarttouw Book 20101st edition Springer

[復(fù)制鏈接]
樓主: burgeon
41#
發(fā)表于 2025-3-28 14:47:43 | 只看該作者
42#
發(fā)表于 2025-3-28 19:33:39 | 只看該作者
Book 20101st edition. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all
43#
發(fā)表于 2025-3-29 01:01:56 | 只看該作者
44#
發(fā)表于 2025-3-29 05:52:44 | 只看該作者
Polynomial Solutions of Eigenvalue Problems,∈??{?1,0}, .∈? and (.,.)≠(1,0). This class of operators includes the .-derivative operator . (.=0), the difference operator Δ (.=1 and .=1) and also the differentiation operator . as a limit case (.→1 and .=0). In order to avoid the latter limiting process, we introduce the operator . in a second wa
45#
發(fā)表于 2025-3-29 09:15:12 | 只看該作者
46#
發(fā)表于 2025-3-29 15:25:27 | 只看該作者
47#
發(fā)表于 2025-3-29 16:43:50 | 只看該作者
48#
發(fā)表于 2025-3-29 23:27:51 | 只看該作者
Hypergeometric Orthogonal Polynomialsgonal polynomials we state the most important properties such as a representation as a hypergeometric function, orthogonality relation(s), the three-term recurrence relation, the second-order differential or difference equation, the forward shift (or degree lowering) and backward shift (or degree ra
49#
發(fā)表于 2025-3-30 02:30:33 | 只看該作者
Orthogonal Polynomial Solutions in ,,+,, of Real ,-Difference Equations2)) . with .∈{1,2,3,…} or .→∞, where . with . where .,.,.,..,..∈?, .>0, .≠1 and .≠0. If the regularity condition (11.2.4) holds all eigenvalues . are different. This implies by using theorem?3.7 that there exists a sequence of dual polynomials. In this case we have . with .=0 and ..=1=... Furthermor
50#
發(fā)表于 2025-3-30 07:16:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 礼泉县| 德保县| 舒城县| 都安| 类乌齐县| 扎鲁特旗| 张北县| 弋阳县| 南安市| 贵港市| 修文县| 青川县| 临泉县| 苍南县| 定襄县| 儋州市| 清流县| 丰镇市| 沛县| 额济纳旗| 阿拉善左旗| 新乡县| 武冈市| 富阳市| 杭锦旗| 南华县| 文成县| 陆良县| 东丰县| 图片| 惠来县| 乌兰浩特市| 河南省| 镇雄县| 朝阳县| 寿光市| 瑞丽市| 拉萨市| 大邑县| 于田县|