找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergeometric Orthogonal Polynomials and Their q-Analogues; Roelof Koekoek,Peter A. Lesky,René F. Swarttouw Book 20101st edition Springer

[復(fù)制鏈接]
樓主: burgeon
31#
發(fā)表于 2025-3-26 22:09:33 | 只看該作者
32#
發(fā)表于 2025-3-27 03:20:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:57:39 | 只看該作者
Orthogonal Polynomial Solutions in ,, of ,-Difference EquationsIn the case that .=0, .>0 and .≠1 we might replace . by .. in (3.2.1) and then replace . by ... Then we have . In this case the eigenvalue problem reads (cf.?(10.1.1)) . for .=0,1,2,…. This can also be written in the symmetric form . for .=0,1,2,…, with . and . The regularity condition (2.3.3) implies that .≠0.
34#
發(fā)表于 2025-3-27 12:38:46 | 只看該作者
Orthogonal Polynomial Solutions in , of Complex ,-Difference EquationsIt is also possible to obtain real polynomial solutions of the (complex) .-difference equation (12.2.1) . with argument . where .∈??{0} and .,.∈??{0}. By using .=.+., .=.+.. with .,.,.,.∈?, we find that the imaginary part of . equals . This is equal to zero for all .∈? and .∈? if
35#
發(fā)表于 2025-3-27 14:42:30 | 只看該作者
https://doi.org/10.1007/978-3-642-05014-5Askey scheme; Eigenvalue; Hypergeometric function; basic hypergeometric functions; differential equation
36#
發(fā)表于 2025-3-27 21:12:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:28:21 | 只看該作者
Orthogonal Polynomial Solutions in ,,+,, of Real ,-Difference Equationsdifferent. This implies by using theorem?3.7 that there exists a sequence of dual polynomials. In this case we have . with .=0 and ..=1=... Furthermore we have by using (11.2.2) . if we choose .=?1 in (11.2.1).
38#
發(fā)表于 2025-3-28 04:48:26 | 只看該作者
Definitions and Miscellaneous Formulas,s function .(.) is constant between its (countably many) jump points then we have the situation of positive weights .. on a countable subset . of ?. Then the system . is orthogonal on . with respect to these weights as follows:
39#
發(fā)表于 2025-3-28 09:15:26 | 只看該作者
40#
發(fā)表于 2025-3-28 10:26:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 铜川市| 罗山县| 利津县| 中阳县| 格尔木市| 平舆县| 黄山市| 赣榆县| 雅江县| 清镇市| 乌苏市| 蒙山县| 澄迈县| 康乐县| 西乡县| 民勤县| 长白| 台南市| 台东市| 永寿县| 康定县| 章丘市| 闽侯县| 普陀区| 诸暨市| 镇赉县| 海兴县| 西和县| 清远市| 资源县| 鄂伦春自治旗| 石城县| 晋州市| 临夏县| 鞍山市| 泗阳县| 白玉县| 临夏市| 图木舒克市| 沙雅县|