找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Chaos; A Physicist’s View Sergey P. Kuznetsov Book 2012 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelbe

[復(fù)制鏈接]
樓主: 祈求
31#
發(fā)表于 2025-3-27 00:34:52 | 只看該作者
Parametric Generators of Hyperbolic Chaosters, may be regarded as some general principle of design of systems with attractors of the Smale-Williams type. Appropriate and convenient for implementation of this principle, are . (Mandelshtam, 1972; Louisell, 1960; Akhmanov and Khokhlov, 1966; Rabinovich and Trubetskov, 1989; Damgov, 2004), The
32#
發(fā)表于 2025-3-27 01:40:24 | 只看該作者
Recognizing the Hyperbolicity: Cone Criterion and Other Approaches verification of the hyperbolicity in systems, which potentially may possess uniformly hyperbolic chaotic attractors. Substantiation of hyperbolicity is essential to accounting relevant conclusions of the mathematical theory, like availability of description in terms of Markov partitions with a fini
33#
發(fā)表于 2025-3-27 06:59:23 | 只看該作者
Systems of Four Alternately Excited Non-autonomous Oscillatorser. In contrast to Chap. 4, here we examine dynamics in the phase space of larger dimensions; so, the models arc composed of four oscillators activating by turns (usually in pairs). Particularly, we consider a model, in which evolution of the phases in successive epochs of activity is described by t
34#
發(fā)表于 2025-3-27 11:15:55 | 只看該作者
35#
發(fā)表于 2025-3-27 14:30:58 | 只看該作者
Systems with Time-delay Feedbackhis case, it is sufficient to have a single self-oscillator manifesting successive stages of activity and suppression, while the excitation transfer accompanied with appropriate phase transformation is carried out through the delayed feedback loop, from one stage of activity to another. In practical
36#
發(fā)表于 2025-3-27 19:49:12 | 只看該作者
37#
發(fā)表于 2025-3-28 01:59:29 | 只看該作者
38#
發(fā)表于 2025-3-28 02:27:21 | 只看該作者
Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Mapsratory devices and studied in experiments described in (Kuznetsov and Ponomarenko, 2008; Baranov et al., 2010). In a frame of the hyperbolic theory the status of dynamics observed in these systems is not so well defined because the classic formulation of the theory relates to finite-dimensional syst
39#
發(fā)表于 2025-3-28 09:36:46 | 只看該作者
Conclusionthat we have a collection of realistic concrete examples of physically realizable systems with chaotic dynamics, to which the principles of the hyperbolic theory arc applicable (“systems with axiom A”).
40#
發(fā)表于 2025-3-28 11:01:23 | 只看該作者
pplications of the mathematical theory."Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 阳山县| 鄯善县| 昌都县| 新乡市| 天台县| 固镇县| 黄大仙区| 白城市| 元阳县| 扎鲁特旗| 寿宁县| 瑞昌市| 克拉玛依市| 微博| 淳化县| 三都| 如皋市| 邛崃市| 荣成市| 广东省| 宁海县| 桃江县| 聂拉木县| 那坡县| 潞城市| 邻水| 莲花县| 嵊州市| 长白| 皋兰县| 吐鲁番市| 台东市| 新蔡县| 化德县| 墨脱县| 曲周县| 中西区| 台北市| 西畴县| 定陶县|