找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Chaos; A Physicist’s View Sergey P. Kuznetsov Book 2012 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelbe

[復(fù)制鏈接]
查看: 22675|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:42:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hyperbolic Chaos
副標(biāo)題A Physicist’s View
編輯Sergey P. Kuznetsov
視頻videohttp://file.papertrans.cn/431/430582/430582.mp4
概述Written by an experienced teacher of nonlinear dynamics and chaos theory.Accessible to readers with different levels of knowledge.Stresses applications of the mathematical theory
圖書封面Titlebook: Hyperbolic Chaos; A Physicist’s View Sergey P. Kuznetsov Book 2012 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelbe
描述."Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. .?.This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. .?.Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia..?.
出版日期Book 2012
關(guān)鍵詞Chaotic attractors; Chaotic attractors; Chaotic attractors; Dynamical system; Dynamical system; Dynamical
版次1
doihttps://doi.org/10.1007/978-3-642-23666-2
isbn_ebook978-3-642-23666-2
copyrightHigher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg 2012
The information of publication is updating

書目名稱Hyperbolic Chaos影響因子(影響力)




書目名稱Hyperbolic Chaos影響因子(影響力)學(xué)科排名




書目名稱Hyperbolic Chaos網(wǎng)絡(luò)公開度




書目名稱Hyperbolic Chaos網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperbolic Chaos被引頻次




書目名稱Hyperbolic Chaos被引頻次學(xué)科排名




書目名稱Hyperbolic Chaos年度引用




書目名稱Hyperbolic Chaos年度引用學(xué)科排名




書目名稱Hyperbolic Chaos讀者反饋




書目名稱Hyperbolic Chaos讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:15:24 | 只看該作者
地板
發(fā)表于 2025-3-22 07:34:39 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:22 | 只看該作者
http://image.papertrans.cn/h/image/430582.jpg
6#
發(fā)表于 2025-3-22 14:37:22 | 只看該作者
https://doi.org/10.1007/978-3-642-23666-2Chaotic attractors; Chaotic attractors; Chaotic attractors; Dynamical system; Dynamical system; Dynamical
7#
發(fā)表于 2025-3-22 17:57:56 | 只看該作者
t to enhance the patency rates of small-diameter (<6 mm inner diameter [id]) vascular prostheses. His original hypothesis was that, if one could promote the establishment of autologous ECs at the blood—synthetic material interface (disguise) of a vascular prosthesis, a normal endothelium-lined surfa
8#
發(fā)表于 2025-3-23 00:13:33 | 只看該作者
9#
發(fā)表于 2025-3-23 04:18:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:17:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江川县| 石河子市| 乡城县| 大新县| 温州市| 定结县| 西安市| 绥德县| 瑞安市| 正蓝旗| 温州市| 荆州市| 澜沧| 饶平县| 定襄县| 托里县| 巴林右旗| 林芝县| 桐乡市| 桃江县| 江安县| 伊宁市| 尼玛县| 阳东县| 岫岩| 西安市| 丰原市| 无锡市| 乌兰浩特市| 萝北县| 连城县| 保康县| 新安县| 兖州市| 嘉禾县| 石家庄市| 临西县| 刚察县| 绥阳县| 永州市| 河北省|