找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybride Optimierung für Dimensionsreduktion; Unüberwachte Regress Daniel Lückehe Book 2015 Springer Fachmedien Wiesbaden 2015 Big Data.Comp

[復制鏈接]
樓主: 漠不關心
11#
發(fā)表于 2025-3-23 12:05:49 | 只看該作者
12#
發(fā)表于 2025-3-23 15:53:47 | 只看該作者
13#
發(fā)表于 2025-3-23 20:53:01 | 只看該作者
Daniel LückeheWissenschaftlich-technische Studie.Includes supplementary material:
14#
發(fā)表于 2025-3-23 22:48:23 | 只看該作者
BestMastershttp://image.papertrans.cn/h/image/430219.jpg
15#
發(fā)表于 2025-3-24 05:45:50 | 只看該作者
https://doi.org/10.1007/978-3-658-10738-3Big Data; Computational Intelligence; Dimensionsreduktion; Maschinelles Lernen; Regressionsmodell
16#
發(fā)表于 2025-3-24 08:41:45 | 只看該作者
,Unüberwachte Kernel- Regression,überwachten Regression, jedoch verwendet er als Regressionsmodell den Nadaraya-Watson-Sch?tzer mit KernelFUnktion, weshalb es sich um eine unüberwachte Kernel-Regression handelt, wie beispielsweise aus [7] bekannt.
17#
發(fā)表于 2025-3-24 14:21:02 | 只看該作者
Gradientenabstieg,rbaren Fitnessfunktion. Die Funktion wird dabei partiell nach den einzelnen Elementen abgeleitet und die L?sung zur Maximierung mit der Steigung und zur Minimierung entgegen der Steigung verschoben [14]. In dieser Arbeit ist die Loss-Funktion die Fitnessfunktion und soll minimiert werden.
18#
發(fā)表于 2025-3-24 17:55:48 | 只看該作者
Variable Kernel-Funktion,arameter über die evolution?re Steuerung bestimmt werden k?nnen. Die Idee ist, dass die evolution?re Steuerung das Ergebnis des Loss-Fehlers mit und ohne Gradientenabstieg, aber auch bestimmte Teile der Co-Ranking-Matrix optimieren kann und durch eine variable Kernel-Funktion zus?tzliche Freiheitsgrade erh?lt, um das Ergebnis zu verbessern.
19#
發(fā)表于 2025-3-24 20:29:21 | 只看該作者
978-3-658-10737-6Springer Fachmedien Wiesbaden 2015
20#
發(fā)表于 2025-3-25 02:28:56 | 只看該作者
Hybride Optimierung für Dimensionsreduktion978-3-658-10738-3Series ISSN 2625-3577 Series E-ISSN 2625-3615
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋江市| 通城县| 台山市| 南召县| 武定县| 萨嘎县| 大冶市| 嘉定区| 革吉县| 抚顺市| 银川市| 松阳县| 师宗县| 扶余县| 吴江市| 洪湖市| 十堰市| 蓝山县| 濮阳县| 荃湾区| 沛县| 宣恩县| 京山县| 沂水县| 班戈县| 宝应县| 进贤县| 聊城市| 南宫市| 盐池县| 台江县| 临夏县| 尚义县| 米泉市| 乌什县| 金川县| 万载县| 达尔| 汤阴县| 白沙| 通河县|