找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Self-Organizing Modeling Systems; Godfrey C. Onwubolu Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithm.algorithms.artific

[復(fù)制鏈接]
查看: 29489|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:40:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hybrid Self-Organizing Modeling Systems
編輯Godfrey C. Onwubolu
視頻videohttp://file.papertrans.cn/431/430165/430165.mp4
概述Presents a complete introduction to Hybrid Self-Organizing Modeling Systems
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Hybrid Self-Organizing Modeling Systems;  Godfrey C. Onwubolu Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithm.algorithms.artific
描述.The Group Method of Data Handling (GMDH) is a typical inductive modeling method that is built on principles of self-organization for modeling complex systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find very complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate these problems, GMDH has been recently hybridized with some computational intelligence (CI) techniques resulting in more robust and flexible hybrid intelligent systems for solving complex, real-world problems. The central theme of this book is to present in a very clear manner hybrids of some computational intelligence techniques and GMDH approach. ...The hybrids discussed in the book include GP-GMDH (Genetic Programming-GMDH) algorithm, GA-GMDH (Genetic Algorithm-GMDH) algorithm, DE-GMDH (Differential Evolution-GMDH) algorithm, and PSO-GMDH (Particle Swarm Optimization) algorithm. Also included is the description of the recently introduced GAME (Group Adaptive Models Evolution algorithm....The hybrid character of models and their self-organizing ability give these hybrid self
出版日期Book 2009
關(guān)鍵詞algorithm; algorithms; artificial intelligence; bioinformatics; complex system; complex systems; computati
版次1
doihttps://doi.org/10.1007/978-3-642-01530-4
isbn_softcover978-3-642-10182-3
isbn_ebook978-3-642-01530-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Hybrid Self-Organizing Modeling Systems影響因子(影響力)




書目名稱Hybrid Self-Organizing Modeling Systems影響因子(影響力)學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems網(wǎng)絡(luò)公開度




書目名稱Hybrid Self-Organizing Modeling Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems被引頻次




書目名稱Hybrid Self-Organizing Modeling Systems被引頻次學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems年度引用




書目名稱Hybrid Self-Organizing Modeling Systems年度引用學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems讀者反饋




書目名稱Hybrid Self-Organizing Modeling Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:46 | 只看該作者
Book 2009 systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find very complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate these problems, GMDH has been recentl
板凳
發(fā)表于 2025-3-22 04:12:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:30:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:49:01 | 只看該作者
6#
發(fā)表于 2025-3-22 13:15:25 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:11 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:55 | 只看該作者
Hybrid Computational Intelligence and GMDH Systems,ry complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate the problems associated with standard GMDH approach, a number of researchers have attempted to hybridize GMDH with some evolutionary optimization techniques. This is the central theme of th
9#
發(fā)表于 2025-3-23 05:05:50 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:58 | 只看該作者
Hybrid Genetic Algorithm and GMDH System, design the coefficients as well as the connectivity configuration of GMDH-type neural networks used for modelling and prediction of various complex models in both single and multi-objective Pareto based optimization processes. Such generalization of network’s topology provides near optimal networks
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湾仔区| 甘肃省| 吴桥县| 紫阳县| 靖安县| 临猗县| 宝清县| 锡林郭勒盟| 循化| 白水县| 盖州市| 江源县| 莒南县| 南溪县| 合川市| 昌都县| 黄陵县| 台江县| 茶陵县| 从江县| 德安县| 鸡西市| 盈江县| 台前县| 新昌县| 怀宁县| 静乐县| 宜章县| 师宗县| 凤阳县| 黑水县| 新余市| 洪雅县| 麻阳| 进贤县| 巴中市| 玛沁县| 柳河县| 城市| 贺州市| 泽库县|