找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Self-Organizing Modeling Systems; Godfrey C. Onwubolu Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithm.algorithms.artific

[復(fù)制鏈接]
查看: 29492|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:40:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hybrid Self-Organizing Modeling Systems
編輯Godfrey C. Onwubolu
視頻videohttp://file.papertrans.cn/431/430165/430165.mp4
概述Presents a complete introduction to Hybrid Self-Organizing Modeling Systems
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Hybrid Self-Organizing Modeling Systems;  Godfrey C. Onwubolu Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithm.algorithms.artific
描述.The Group Method of Data Handling (GMDH) is a typical inductive modeling method that is built on principles of self-organization for modeling complex systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find very complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate these problems, GMDH has been recently hybridized with some computational intelligence (CI) techniques resulting in more robust and flexible hybrid intelligent systems for solving complex, real-world problems. The central theme of this book is to present in a very clear manner hybrids of some computational intelligence techniques and GMDH approach. ...The hybrids discussed in the book include GP-GMDH (Genetic Programming-GMDH) algorithm, GA-GMDH (Genetic Algorithm-GMDH) algorithm, DE-GMDH (Differential Evolution-GMDH) algorithm, and PSO-GMDH (Particle Swarm Optimization) algorithm. Also included is the description of the recently introduced GAME (Group Adaptive Models Evolution algorithm....The hybrid character of models and their self-organizing ability give these hybrid self
出版日期Book 2009
關(guān)鍵詞algorithm; algorithms; artificial intelligence; bioinformatics; complex system; complex systems; computati
版次1
doihttps://doi.org/10.1007/978-3-642-01530-4
isbn_softcover978-3-642-10182-3
isbn_ebook978-3-642-01530-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Hybrid Self-Organizing Modeling Systems影響因子(影響力)




書目名稱Hybrid Self-Organizing Modeling Systems影響因子(影響力)學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems網(wǎng)絡(luò)公開度




書目名稱Hybrid Self-Organizing Modeling Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems被引頻次




書目名稱Hybrid Self-Organizing Modeling Systems被引頻次學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems年度引用




書目名稱Hybrid Self-Organizing Modeling Systems年度引用學(xué)科排名




書目名稱Hybrid Self-Organizing Modeling Systems讀者反饋




書目名稱Hybrid Self-Organizing Modeling Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:46 | 只看該作者
Book 2009 systems. However, it is known to often under-perform on non-parametric regression tasks, while time series modeling GMDH exhibits a tendency to find very complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate these problems, GMDH has been recentl
板凳
發(fā)表于 2025-3-22 04:12:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:30:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:49:01 | 只看該作者
6#
發(fā)表于 2025-3-22 13:15:25 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:11 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:55 | 只看該作者
Hybrid Computational Intelligence and GMDH Systems,ry complex polynomials that cannot model well future, unseen oscillations of the series. In order to alleviate the problems associated with standard GMDH approach, a number of researchers have attempted to hybridize GMDH with some evolutionary optimization techniques. This is the central theme of th
9#
發(fā)表于 2025-3-23 05:05:50 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:58 | 只看該作者
Hybrid Genetic Algorithm and GMDH System, design the coefficients as well as the connectivity configuration of GMDH-type neural networks used for modelling and prediction of various complex models in both single and multi-objective Pareto based optimization processes. Such generalization of network’s topology provides near optimal networks
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄河市| 宁波市| 孟连| 鸡东县| 堆龙德庆县| 罗源县| 和田市| 望奎县| 台中市| 蒙自县| 清徐县| 黄陵县| 高阳县| 池州市| 绥宁县| 揭阳市| 洪湖市| 滕州市| 珲春市| 永丰县| 天门市| 密山市| 昌吉市| 汨罗市| 海晏县| 紫金县| 永定县| 巴楚县| 浏阳市| 马关县| 伊通| 衢州市| 宁国市| 周口市| 灵台县| 通州市| 宁德市| 霞浦县| 永嘉县| 怀安县| 金溪县|