找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: coherent
11#
發(fā)表于 2025-3-23 12:29:22 | 只看該作者
Textbook 2021questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory..Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Sing
12#
發(fā)表于 2025-3-23 15:21:53 | 只看該作者
Bruno Scárduadie 1995 zum F?rderprogramm Demokratisch Handeln eingereicht wurden. .Das Buch enth?lt zus?tzlich einen Anhang über wichtige Einrichtungen und Ver?ffentlichungen zur politischen Bildung. Dadurch spricht es auch Studierende der politischen Wissenschaft an, die dieses Fach unterrichten wollen..
13#
發(fā)表于 2025-3-23 18:39:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:10:28 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:44 | 只看該作者
Bruno ScárduaUseful as supplementary reading in singularity courses and for independent study.Blends fundamental concepts in foliations and singularity theory with modern results on the topic.Includes relevant ope
16#
發(fā)表于 2025-3-24 09:21:04 | 只看該作者
Latin American Mathematics Serieshttp://image.papertrans.cn/h/image/427948.jpg
17#
發(fā)表于 2025-3-24 12:36:08 | 只看該作者
Holomorphic Foliations Given by Closed 1-Forms,closed 1-forms. We study their holonomy and some extension property. Starting with the holomorphic case we are to consider the meromorphic case, making use of the extension results. We study separately the cases of foliations given by closed holomorphic 1-forms and foliations given by closed meromorphic 1-forms.
18#
發(fā)表于 2025-3-24 15:38:19 | 只看該作者
Holomorphic First Integrals,ack even to the work of Poincaré and Painlevé. In modern terms, the striking result of Mattei-Moussu can be see as a landmark in the theory. In this chapter we give a detailed discussion and proof of Mattei-Moussu striking theorem as well as other parallel questions about first integrals of germs of holomorphic foliations.
19#
發(fā)表于 2025-3-24 19:47:32 | 只看該作者
https://doi.org/10.1007/978-3-030-76705-1foliations; singularities; topology; geometry; holomorphic foliations; dynamical systems; algebraic geomet
20#
發(fā)表于 2025-3-25 00:56:12 | 只看該作者
978-3-030-76707-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕头市| 枝江市| 西宁市| 耿马| 应城市| 海盐县| 宁乡县| 沛县| 监利县| 台山市| 汕尾市| 焦作市| 开阳县| 化州市| 广德县| 太湖县| 荆州市| 兰西县| 视频| 静安区| 会泽县| 铅山县| 阿拉善盟| 静乐县| 刚察县| 乐清市| 临猗县| 沾化县| 秦皇岛市| 古浪县| 嘉善县| 昌宁县| 应用必备| 杨浦区| 获嘉县| 青海省| 沈阳市| 峡江县| 修武县| 泗水县| 南漳县|