找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 31173|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:58:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Holomorphic Foliations with Singularities
副標題Key Concepts and Mod
編輯Bruno Scárdua
視頻videohttp://file.papertrans.cn/428/427948/427948.mp4
概述Useful as supplementary reading in singularity courses and for independent study.Blends fundamental concepts in foliations and singularity theory with modern results on the topic.Includes relevant ope
叢書名稱Latin American Mathematics Series
圖書封面Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)
描述This concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki..The text starts with a gentle presentation of the classical notion of foliations, advancing to holomorphic foliations and then holomorphic foliations with singularities. The theory behind reduction of singularities is described in detail, as well the cases for dynamics of a local diffeomorphism and foliations on complex projective spaces. A final chapter brings recent questions in the field, as holomorphic flows on Stein spaces and transversely homogeneous holomorphic foliations, along with a list of open questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory..Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Sing
出版日期Textbook 2021
關(guān)鍵詞foliations; singularities; topology; geometry; holomorphic foliations; dynamical systems; algebraic geomet
版次1
doihttps://doi.org/10.1007/978-3-030-76705-1
isbn_softcover978-3-030-76707-5
isbn_ebook978-3-030-76705-1Series ISSN 2524-6755 Series E-ISSN 2524-6763
issn_series 2524-6755
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Holomorphic Foliations with Singularities影響因子(影響力)




書目名稱Holomorphic Foliations with Singularities影響因子(影響力)學(xué)科排名




書目名稱Holomorphic Foliations with Singularities網(wǎng)絡(luò)公開度




書目名稱Holomorphic Foliations with Singularities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Holomorphic Foliations with Singularities被引頻次




書目名稱Holomorphic Foliations with Singularities被引頻次學(xué)科排名




書目名稱Holomorphic Foliations with Singularities年度引用




書目名稱Holomorphic Foliations with Singularities年度引用學(xué)科排名




書目名稱Holomorphic Foliations with Singularities讀者反饋




書目名稱Holomorphic Foliations with Singularities讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:43 | 只看該作者
Foliations on Complex Projective Spaces,ex projective spaces. We will be mainly concerned with the codimension one case. We will reinforce the idea that .. We also show the natural interplay between algebraic geometry and the theory of holomorphic foliations with singularities.
板凳
發(fā)表于 2025-3-22 03:20:09 | 只看該作者
2524-6755 heory with modern results on the topic.Includes relevant opeThis concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds,
地板
發(fā)表于 2025-3-22 06:22:10 | 只看該作者
Textbook 2021ng vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki..The text starts with a gentle presentation of the classical n
5#
發(fā)表于 2025-3-22 09:38:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:38:12 | 只看該作者
Reduction of Singularities,rious authors have given important contributions to the subject. Although the general problem of the reduction of singularities for a germ of a holomorphic foliation singularity remains open, several are the cases where it is already finished. In this chapter we describe the method of reduction of s
7#
發(fā)表于 2025-3-22 18:26:45 | 只看該作者
8#
發(fā)表于 2025-3-22 21:23:10 | 只看該作者
Foliations on Complex Projective Spaces,e very important in the description of the phenomena modeled by holomorphic foliations. In this chapter we shall study holomorphic foliations on complex projective spaces. We will be mainly concerned with the codimension one case. We will reinforce the idea that .. We also show the natural interplay
9#
發(fā)表于 2025-3-23 03:24:13 | 只看該作者
10#
發(fā)表于 2025-3-23 09:36:53 | 只看該作者
Bruno Scárduantersucht, welches Wissen und welche F?higkeiten die Lernenden sich unter diesen Bedingungen erwerben k?nnen, um verantwortlich an der politischen Meinungsbildung und an der Gestaltung einer demokratischen Gesellschaft mitzuwirken. Die Projektgruppe Civic Education des Berliner Max-Planck-Instituts
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 邯郸市| 太康县| 孟村| 虞城县| 凤翔县| 略阳县| 台东市| 永宁县| 兴化市| 余姚市| 汪清县| 特克斯县| 阜城县| 时尚| 勐海县| 天台县| 中宁县| 根河市| 丹棱县| 黑龙江省| 新丰县| 麦盖提县| 栖霞市| 古浪县| 玉龙| 天气| 东山县| 兴安县| 巧家县| 临江市| 缙云县| 商河县| 明光市| 雷波县| 和田市| 廉江市| 洞头县| 时尚| 祁东县| 利津县|