找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials; Allan M. Krall Book 2002 Springer Basel AG 2002 Boundary value problem.

[復(fù)制鏈接]
樓主: 我在爭斗志
41#
發(fā)表于 2025-3-28 15:54:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:56:49 | 只看該作者
Examples of Sobolev Differential OperatorsFrom each section of the previous chapter we list at least one example. For the singular problems there are several.
43#
發(fā)表于 2025-3-29 01:05:24 | 只看該作者
Regular Linear Hamiltonian Systems L. Wilder and L. Schlesinger. G. A. Bliss [3] in 1926 seems to have been the first to discuss regular, self-adjoint differential systems. Additional references to their works may be found in the papers of Birkhoff and Langer [2], and in the book [4] by Coddington and Levinson.
44#
發(fā)表于 2025-3-29 04:59:19 | 只看該作者
45#
發(fā)表于 2025-3-29 08:49:58 | 只看該作者
The Spectral Resolution for Linear Hamiltonian Systems with One Singular Pointperators in a Hilbert space, looks like when applied to the self-adjoint linear Hamiltonian systems of Hinton and Shaw. Remarkably we can find detailed formulas for the spectral measure and the Hilbert space it generates, far more than is possible for the setting employed by Niessen.
46#
發(fā)表于 2025-3-29 14:27:22 | 只看該作者
47#
發(fā)表于 2025-3-29 15:40:32 | 只看該作者
48#
發(fā)表于 2025-3-29 21:35:24 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/h/image/427075.jpg
49#
發(fā)表于 2025-3-30 00:42:27 | 只看該作者
0255-0156 systemsand their scalar counterparts and their application to orthogonal polynomials. In a sense, this is an updating of E. C. Titchmarsh‘s classic Eigenfunction Expansions. My interest in these areas began in 1960-61, when, as a graduate student, I was introduced by my advisors E. J. McShane and M
50#
發(fā)表于 2025-3-30 06:05:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 宝坻区| 聂拉木县| 安化县| 福鼎市| 安多县| 西宁市| 夹江县| 合肥市| 新民市| 江阴市| 溧阳市| 达孜县| 济阳县| 扬州市| 德惠市| 正宁县| 双峰县| 东港市| 嘉义市| 拉萨市| 和田市| 惠州市| 娄烦县| 宣威市| 海城市| 大庆市| 元阳县| 诏安县| 桃江县| 南郑县| 安平县| 青州市| 靖远县| 政和县| 济源市| 仁怀市| 和平区| 休宁县| 南木林县| 贺兰县|