找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials; Allan M. Krall Book 2002 Springer Basel AG 2002 Boundary value problem.

[復(fù)制鏈接]
樓主: 我在爭斗志
41#
發(fā)表于 2025-3-28 15:54:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:56:49 | 只看該作者
Examples of Sobolev Differential OperatorsFrom each section of the previous chapter we list at least one example. For the singular problems there are several.
43#
發(fā)表于 2025-3-29 01:05:24 | 只看該作者
Regular Linear Hamiltonian Systems L. Wilder and L. Schlesinger. G. A. Bliss [3] in 1926 seems to have been the first to discuss regular, self-adjoint differential systems. Additional references to their works may be found in the papers of Birkhoff and Langer [2], and in the book [4] by Coddington and Levinson.
44#
發(fā)表于 2025-3-29 04:59:19 | 只看該作者
45#
發(fā)表于 2025-3-29 08:49:58 | 只看該作者
The Spectral Resolution for Linear Hamiltonian Systems with One Singular Pointperators in a Hilbert space, looks like when applied to the self-adjoint linear Hamiltonian systems of Hinton and Shaw. Remarkably we can find detailed formulas for the spectral measure and the Hilbert space it generates, far more than is possible for the setting employed by Niessen.
46#
發(fā)表于 2025-3-29 14:27:22 | 只看該作者
47#
發(fā)表于 2025-3-29 15:40:32 | 只看該作者
48#
發(fā)表于 2025-3-29 21:35:24 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/h/image/427075.jpg
49#
發(fā)表于 2025-3-30 00:42:27 | 只看該作者
0255-0156 systemsand their scalar counterparts and their application to orthogonal polynomials. In a sense, this is an updating of E. C. Titchmarsh‘s classic Eigenfunction Expansions. My interest in these areas began in 1960-61, when, as a graduate student, I was introduced by my advisors E. J. McShane and M
50#
發(fā)表于 2025-3-30 06:05:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 高雄市| 罗定市| 肃南| 尚义县| 涿州市| 高碑店市| 高雄市| 寿光市| 新密市| 宁远县| 安宁市| 新民市| 凤城市| 吉隆县| 溆浦县| 崇文区| 博罗县| 台北县| 枞阳县| 兴义市| 临西县| 河西区| 寻乌县| 安化县| 怀宁县| 肃宁县| 建昌县| 上饶县| 仁寿县| 佛学| 天水市| 昌乐县| 合肥市| 醴陵市| 香格里拉县| 临西县| 林芝县| 江山市| 临沂市| 柳江县|