找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials; Allan M. Krall Book 2002 Springer Basel AG 2002 Boundary value problem.

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:27:36 | 只看該作者
Hilbert Spaceshe subject of the book. All too frequently this chapter is not read, largely because it tends to be disconnected and incomplete, and, therefore, not a coherent platform on which to base the remainder of the book. Nonetheless such a chapter is essential because it sets the tone for both author and re
22#
發(fā)表于 2025-3-25 10:09:55 | 只看該作者
23#
發(fā)表于 2025-3-25 15:11:42 | 只看該作者
Regular Linear Hamiltonian Systems L. Wilder and L. Schlesinger. G. A. Bliss [3] in 1926 seems to have been the first to discuss regular, self-adjoint differential systems. Additional references to their works may be found in the papers of Birkhoff and Langer [2], and in the book [4] by Coddington and Levinson.
24#
發(fā)表于 2025-3-25 19:04:15 | 只看該作者
The Niessen Approach to Singular Hamiltonian Systemsular at one end, is restricted to a regular interval, then each regular, separated boundary condition imposed near a singular end is in a 1-to-1 correspondence with a point on a circle in the complex plane. That is, each such boundary condition corresponds to a different point on the circle, and eve
25#
發(fā)表于 2025-3-25 21:48:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:36 | 只看該作者
The M(λ) Surfaceheck of the .(λ) equation, or its representation as .easily shows this to be true. In higher derivations, however, the surface is so complicated that it is impossible to visualize in any real sense. For example, if . = 4, the .(λ) function is a 2 × 2 complex matrix. It involves four complex componen
27#
發(fā)表于 2025-3-26 05:01:45 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:05 | 只看該作者
Orthogonal Polynomials Satisfying Second Order Differential Equationshe four classical sets of orthgonal polynomials satisfying a collection of differential equations of second order, both formally, then in an .. setting as eigenfunctions for a differential operator. Subcases are also exhibited. Finally we examine the one enigmatic case, the Bessel polynomials.
29#
發(fā)表于 2025-3-26 15:26:05 | 只看該作者
Orthogonal Polynomials Satisfying Fourth Order Differential Equationso fourth order differential equations. We then briefly discuss the squares of the differential equations of the second order, giving a number of easily derived examples of fourth order problems. This is followed by three new orthogonal polynomial sets satisfying fourth order differential equations,
30#
發(fā)表于 2025-3-26 17:01:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双辽市| 镇沅| 漳州市| 商洛市| 遂川县| 临夏县| 泽州县| 莱州市| 灯塔市| 高青县| 平果县| 岳普湖县| 泸定县| 闻喜县| 仙桃市| 五莲县| 荣成市| 永康市| 白沙| 遵义县| 遂溪县| 建湖县| 陵川县| 江川县| 芦溪县| 九台市| 仁布县| 莱芜市| 海口市| 巴林右旗| 万山特区| 西峡县| 肃宁县| 汕尾市| 江华| 福清市| 雷波县| 和田市| 克什克腾旗| 长治市| 宣威市|