找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Heat Kernel on Lie Groups and Maximally Symmetric Spaces; Ivan G. Avramidi Book 2023 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: Definite
11#
發(fā)表于 2025-3-23 11:10:35 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:26 | 只看該作者
Ivan Avramidim Laufe der organischen Evolution entwickelt haben. Diese Entwicklung soll ohne externe Lenkung, etwa g?ttlicher Art, und ohne blo? interne Ausrichtungen (organische oder kulturelle Orthogenese) verlaufen sein. Vielmehr wird angenommen, da? es in diesen Prozessen immer wieder zu einer Vielfalt kommt, von der dann nur ein Teil weitertr?gt.
13#
發(fā)表于 2025-3-23 22:03:53 | 只看該作者
Ivan Avramidiig. Es gibt Autoren, die raten, in einem solchen Fall ein Kritikgespr?ch zu führen. Ich sage: falsch! Es kostet Zeit, frustriert und bringt kein Ergebnis. Stellen Sie sich vor, Ihr Mitarbeiter produziert Fehler; auch hier würde ich kein konventionelles Kritikgespr?ch führen..
14#
發(fā)表于 2025-3-24 00:27:20 | 只看該作者
15#
發(fā)表于 2025-3-24 05:40:45 | 只看該作者
Geometry of ,(2)he Casimir operator, and the characters. Further, we compute the left-invariant and the right-invariant vector fields and one-forms and use them to define the bi-invariant metric, the volume form, the connection, the curvature and the geodesic distance. We construct the Laplacian and discuss the heat kernel on the group.
16#
發(fā)表于 2025-3-24 06:59:21 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:29 | 只看該作者
https://doi.org/10.1007/978-3-031-27451-0Heat Kernel; Heat Kernel Lie Groups; Heat Kernel Maximally Symmetric Spaces; Scalar Heat Kernel; Spinor
18#
發(fā)表于 2025-3-24 16:54:24 | 只看該作者
Introductionrivatives, Clifford algebra, the Lie algebra of the spin group, the Laplacian and the Dirac operator. We introduce the generalized spherical coordinates and the relevant angular differential operators. We also introduce a class of second-order ordinary differential operators that we call hypergeomet
19#
發(fā)表于 2025-3-24 21:56:48 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特左旗| 新田县| 剑阁县| 锡林浩特市| 云龙县| 凤城市| 张家界市| 贵定县| 五大连池市| 黔西县| 安溪县| 蛟河市| 宽城| 上栗县| 滦平县| 灌云县| 汝州市| 日土县| 汾西县| 南漳县| 太保市| 漳平市| 梧州市| 工布江达县| 德州市| 锦屏县| 眉山市| 连州市| 镇安县| 桃园市| 哈尔滨市| 洮南市| 洱源县| 高安市| 滨州市| 五指山市| 金乡县| 通榆县| 三亚市| 星座| 招远市|