找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Heat Kernel on Lie Groups and Maximally Symmetric Spaces; Ivan G. Avramidi Book 2023 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 50690|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:36:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces
編輯Ivan G. Avramidi
視頻videohttp://file.papertrans.cn/425/424988/424988.mp4
概述Studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.Introduces many original ideas, methods, and tools developed by the author.Provides a list of all kn
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Heat Kernel on Lie Groups and Maximally Symmetric Spaces;  Ivan G. Avramidi Book 2023 The Editor(s) (if applicable) and The Author(s), unde
描述.This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions.This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics..
出版日期Book 2023
關(guān)鍵詞Heat Kernel; Heat Kernel Lie Groups; Heat Kernel Maximally Symmetric Spaces; Scalar Heat Kernel; Spinor
版次1
doihttps://doi.org/10.1007/978-3-031-27451-0
isbn_softcover978-3-031-27450-3
isbn_ebook978-3-031-27451-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces影響因子(影響力)




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces影響因子(影響力)學(xué)科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces網(wǎng)絡(luò)公開度




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces被引頻次




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces被引頻次學(xué)科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces年度引用




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces年度引用學(xué)科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces讀者反饋




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:01 | 只看該作者
Heat Kernel on Lie Groups and Maximally Symmetric Spaces978-3-031-27451-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
板凳
發(fā)表于 2025-3-22 00:43:45 | 只看該作者
Ivan G. AvramidiStudies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.Introduces many original ideas, methods, and tools developed by the author.Provides a list of all kn
地板
發(fā)表于 2025-3-22 05:15:06 | 只看該作者
Frontiers in Mathematicshttp://image.papertrans.cn/h/image/424988.jpg
5#
發(fā)表于 2025-3-22 12:13:13 | 只看該作者
Ivan AvramidiEines der wichtigsten Themen, das unter anderem in den Reaktionen auf Gesetzesentwürfe immer wieder auftaucht, ist das Bestellerprinzip. Dessen Einführung w?re das Panazee, um die Unzul?nglichkeiten in der Maklerbranche zu beheben.
6#
發(fā)表于 2025-3-22 13:43:46 | 只看該作者
Scalar Heat KernelIn this chapter we show that the calculation of the scalar heat kernel and the resolvent on .-dimensional spheres . and hyperbolic spaces . can be reduced to one and two dimensions. We explicitly compute the scalar heat kernel and the resolvent first in one and two dimensions and then for an arbitrary dimension.
7#
發(fā)表于 2025-3-22 19:01:57 | 只看該作者
Spinor Heat KernelIn this chapter we show that the spinor heat trace on the sphere . can be computed by purely algebraic methods. We also explicitly compute the spinor heat kernel and the resolvent on the spheres . and the hyperbolic spaces ..
8#
發(fā)表于 2025-3-22 23:13:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:32:04 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳市| 万载县| 赫章县| 苏尼特左旗| 南陵县| 嘉黎县| 郴州市| 临泉县| 行唐县| 鲁甸县| 内乡县| 天镇县| 什邡市| 漾濞| 永德县| 海淀区| 株洲县| 三都| 平陆县| 信阳市| 陕西省| 交城县| 安陆市| 灵武市| 常山县| 鄢陵县| 鹰潭市| 龙门县| 汕头市| 兴业县| 水城县| 自贡市| 新化县| 巴东县| 云梦县| 尉犁县| 通渭县| 河池市| 宣化县| 潼关县| 泰和县|