找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Reform Simplified; What Professionals i Dave Parks Book 2012Latest edition David Parks 2012

[復(fù)制鏈接]
樓主: Addiction
31#
發(fā)表于 2025-3-26 23:13:50 | 只看該作者
Insurance Shift,quirements for what policies must cover, it mandates that everybody be offered coverage, and it attempts to cap administrative costs, profits, and overhead. In short, it closes some opportunities and opens others, particularly with the influx of an estimated 16 million new customers.
32#
發(fā)表于 2025-3-27 03:30:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:22 | 只看該作者
Backlash,ndividual mandate. But it placed limits on another key provision of the law—the expansion of Medicaid, a program that provides states with funding to pay medical bills for pregnant women, children, needy families, and the disabled.
34#
發(fā)表于 2025-3-27 10:24:05 | 只看該作者
War on Reform,onents and opponents were locked in stalemate until June 28, 2012, when the US Supreme Court upheld key provisions of the Affordable Care Act, including the individual mandate. The legal ruling was a blow to opponents of health care reform, but opposition to the new law continued in the political arena.
35#
發(fā)表于 2025-3-27 15:39:21 | 只看該作者
Dave ParksWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
36#
發(fā)表于 2025-3-27 18:40:32 | 只看該作者
Dave ParksWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
37#
發(fā)表于 2025-3-27 23:08:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:36:50 | 只看該作者
39#
發(fā)表于 2025-3-28 07:00:23 | 只看該作者
40#
發(fā)表于 2025-3-28 13:14:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙川县| 三台县| 甘谷县| 万山特区| 乌兰县| 赤水市| 博兴县| 金门县| 云霄县| 洞口县| 棋牌| 织金县| 新密市| 庆阳市| 肇源县| 崇州市| 安乡县| 新巴尔虎左旗| 岗巴县| 黎川县| 平舆县| 定日县| 博湖县| 莱州市| 澄迈县| 武威市| 合江县| 红安县| 银川市| 布拖县| 泸州市| 舞阳县| 江川县| 互助| 巴里| 抚远县| 连云港市| 壤塘县| 罗甸县| 会泽县| 贵溪市|