找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Reform Simplified; What Professionals i Dave Parks Book 2012Latest edition David Parks 2012

[復制鏈接]
樓主: Addiction
11#
發(fā)表于 2025-3-23 10:38:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:07:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:41 | 只看該作者
Dave Parksdegree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversal deformation. Some applications of this fact are given in particular to the non-smooth-ability of certain curves.
15#
發(fā)表于 2025-3-24 06:18:57 | 只看該作者
topologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
16#
發(fā)表于 2025-3-24 08:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 13:49:49 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
18#
發(fā)表于 2025-3-24 17:52:21 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
19#
發(fā)表于 2025-3-24 21:27:07 | 只看該作者
Dave Parkstopologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
20#
發(fā)表于 2025-3-25 03:12:04 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
旅游| 南川市| 连南| 十堰市| 灵武市| 沛县| 大英县| 望都县| 房产| 汕头市| 永丰县| 崇义县| 郑州市| 闸北区| 拜城县| 湖州市| 达州市| 石狮市| 申扎县| 扶余县| 江口县| 东安县| 北辰区| 德兴市| 白沙| 花莲市| 阿城市| 柞水县| 高唐县| 峨边| 额尔古纳市| 门头沟区| 滨州市| 长葛市| 卢氏县| 万年县| 樟树市| 阿荣旗| 鄂尔多斯市| 随州市| 岳阳市|