找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Computing; A Survival guide for Philip Burnard Book 1995 Philip Burnard 1995 Windows.databases.design.productivity.software

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 20:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:52 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
36#
發(fā)表于 2025-3-27 20:00:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:23 | 只看該作者
38#
發(fā)表于 2025-3-28 05:26:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:15:43 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
40#
發(fā)表于 2025-3-28 14:12:24 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗洪县| 会东县| 新疆| 昭苏县| 乌拉特前旗| 明星| 左权县| 高邑县| 水富县| 赤峰市| 临沂市| 富民县| 新宾| 苍溪县| 荔波县| 盈江县| 玉门市| 甘德县| 澜沧| 东乡| 望谟县| 长泰县| 静海县| 鄯善县| 津南区| 钦州市| 南平市| 洛隆县| 唐河县| 新沂市| 容城县| 四会市| 阜新市| 东丽区| 林口县| 北流市| 田东县| 吐鲁番市| 利辛县| 赫章县| 阜平县|