找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic and Geometric Analysis; Giovanna Citti,Loukas Grafakos,Xiao Zhong Textbook 2015 Springer Basel 2015 Heisenberg group.maximal func

[復制鏈接]
查看: 54509|回復: 35
樓主
發(fā)表于 2025-3-21 17:30:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Harmonic and Geometric Analysis
編輯Giovanna Citti,Loukas Grafakos,Xiao Zhong
視頻videohttp://file.papertrans.cn/425/424314/424314.mp4
概述Contains two surveys of new results on linear and multilinear analysis.Offers a very nice presentation of the De Giorgi–Moser–Nash result.Contains elegant applications of harmonic analysis to human vi
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Harmonic and Geometric Analysis;  Giovanna Citti,Loukas Grafakos,Xiao Zhong Textbook 2015 Springer Basel 2015 Heisenberg group.maximal func
描述.This book contains an expanded version of lectures delivered by the authors at the CRM in Spring of 2009. It contains four series of lectures. The first one is an application of harmonic analysis and the Heisenberg group to understand human vision. The second and third series of lectures cover some of the main topics on linear and multilinear harmonic analysis. The last one is a clear introduction to a deep result of De Giorgi, Moser and Nash on regularity of elliptic partial differential equations in divergence form. .
出版日期Textbook 2015
關鍵詞Heisenberg group; maximal function; multilinear Calderón-Zygmund operator; weights; partial differential
版次1
doihttps://doi.org/10.1007/978-3-0348-0408-0
isbn_softcover978-3-0348-0407-3
isbn_ebook978-3-0348-0408-0Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Basel 2015
The information of publication is updating

書目名稱Harmonic and Geometric Analysis影響因子(影響力)




書目名稱Harmonic and Geometric Analysis影響因子(影響力)學科排名




書目名稱Harmonic and Geometric Analysis網(wǎng)絡公開度




書目名稱Harmonic and Geometric Analysis網(wǎng)絡公開度學科排名




書目名稱Harmonic and Geometric Analysis被引頻次




書目名稱Harmonic and Geometric Analysis被引頻次學科排名




書目名稱Harmonic and Geometric Analysis年度引用




書目名稱Harmonic and Geometric Analysis年度引用學科排名




書目名稱Harmonic and Geometric Analysis讀者反饋




書目名稱Harmonic and Geometric Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:35 | 只看該作者
,Multilinear Calderón–Zygmund Singular Integrals, usually treated as parameters. Examples of such operators are ubiquitous in harmonic analysis: multiplier operators, homogeneous singular integrals associated with functions Ω on the sphere, Littlewood–Paley operators, Calderón commutators, and the Cauchy integral along Lipschitz curves. Treating t
地板
發(fā)表于 2025-3-22 08:12:45 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:29 | 只看該作者
Giovanna Citti,Alessandro Sarticht Anleihen in den Systematiken der Wirtschaftsprüfung zu nehmen. Die prüferische Sicht gleicht einer strategischen überlegung, die Zusammenh?nge und Risiken abw?gen muss, ohne direkt taktisch zu sehr in die eine oder andere Richtung zu argumentieren. Diese Grundeinstellung sollten sich Unternehmen
6#
發(fā)表于 2025-3-22 15:41:46 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:59 | 只看該作者
8#
發(fā)表于 2025-3-22 23:42:47 | 只看該作者
https://doi.org/10.1007/978-3-0348-0408-0Heisenberg group; maximal function; multilinear Calderón-Zygmund operator; weights; partial differential
9#
發(fā)表于 2025-3-23 04:47:23 | 只看該作者
Giovanna Citti,Loukas Grafakos,Xiao ZhongContains two surveys of new results on linear and multilinear analysis.Offers a very nice presentation of the De Giorgi–Moser–Nash result.Contains elegant applications of harmonic analysis to human vi
10#
發(fā)表于 2025-3-23 06:55:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
开鲁县| 静海县| 巴里| 永吉县| 乐都县| 沛县| 平山县| 玉溪市| 万宁市| 清水县| 临汾市| 房山区| 西贡区| 长寿区| 呼图壁县| 乐平市| 托克托县| 将乐县| 陆良县| 靖边县| 叙永县| 普陀区| 新巴尔虎左旗| 石嘴山市| 遵化市| 南木林县| 苏尼特左旗| 游戏| 汝阳县| 扶沟县| 葫芦岛市| 嘉祥县| 阿图什市| 囊谦县| 齐齐哈尔市| 布尔津县| 普陀区| 宜丰县| 普定县| 泽库县| 乌恰县|