找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic and Geometric Analysis; Giovanna Citti,Loukas Grafakos,Xiao Zhong Textbook 2015 Springer Basel 2015 Heisenberg group.maximal func

[復(fù)制鏈接]
查看: 54516|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:30:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Harmonic and Geometric Analysis
編輯Giovanna Citti,Loukas Grafakos,Xiao Zhong
視頻videohttp://file.papertrans.cn/425/424314/424314.mp4
概述Contains two surveys of new results on linear and multilinear analysis.Offers a very nice presentation of the De Giorgi–Moser–Nash result.Contains elegant applications of harmonic analysis to human vi
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Harmonic and Geometric Analysis;  Giovanna Citti,Loukas Grafakos,Xiao Zhong Textbook 2015 Springer Basel 2015 Heisenberg group.maximal func
描述.This book contains an expanded version of lectures delivered by the authors at the CRM in Spring of 2009. It contains four series of lectures. The first one is an application of harmonic analysis and the Heisenberg group to understand human vision. The second and third series of lectures cover some of the main topics on linear and multilinear harmonic analysis. The last one is a clear introduction to a deep result of De Giorgi, Moser and Nash on regularity of elliptic partial differential equations in divergence form. .
出版日期Textbook 2015
關(guān)鍵詞Heisenberg group; maximal function; multilinear Calderón-Zygmund operator; weights; partial differential
版次1
doihttps://doi.org/10.1007/978-3-0348-0408-0
isbn_softcover978-3-0348-0407-3
isbn_ebook978-3-0348-0408-0Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Basel 2015
The information of publication is updating

書目名稱Harmonic and Geometric Analysis影響因子(影響力)




書目名稱Harmonic and Geometric Analysis影響因子(影響力)學(xué)科排名




書目名稱Harmonic and Geometric Analysis網(wǎng)絡(luò)公開度




書目名稱Harmonic and Geometric Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Harmonic and Geometric Analysis被引頻次




書目名稱Harmonic and Geometric Analysis被引頻次學(xué)科排名




書目名稱Harmonic and Geometric Analysis年度引用




書目名稱Harmonic and Geometric Analysis年度引用學(xué)科排名




書目名稱Harmonic and Geometric Analysis讀者反饋




書目名稱Harmonic and Geometric Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:35 | 只看該作者
,Multilinear Calderón–Zygmund Singular Integrals, usually treated as parameters. Examples of such operators are ubiquitous in harmonic analysis: multiplier operators, homogeneous singular integrals associated with functions Ω on the sphere, Littlewood–Paley operators, Calderón commutators, and the Cauchy integral along Lipschitz curves. Treating t
地板
發(fā)表于 2025-3-22 08:12:45 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:29 | 只看該作者
Giovanna Citti,Alessandro Sarticht Anleihen in den Systematiken der Wirtschaftsprüfung zu nehmen. Die prüferische Sicht gleicht einer strategischen überlegung, die Zusammenh?nge und Risiken abw?gen muss, ohne direkt taktisch zu sehr in die eine oder andere Richtung zu argumentieren. Diese Grundeinstellung sollten sich Unternehmen
6#
發(fā)表于 2025-3-22 15:41:46 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:59 | 只看該作者
8#
發(fā)表于 2025-3-22 23:42:47 | 只看該作者
https://doi.org/10.1007/978-3-0348-0408-0Heisenberg group; maximal function; multilinear Calderón-Zygmund operator; weights; partial differential
9#
發(fā)表于 2025-3-23 04:47:23 | 只看該作者
Giovanna Citti,Loukas Grafakos,Xiao ZhongContains two surveys of new results on linear and multilinear analysis.Offers a very nice presentation of the De Giorgi–Moser–Nash result.Contains elegant applications of harmonic analysis to human vi
10#
發(fā)表于 2025-3-23 06:55:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都匀市| 松溪县| 长春市| 黄平县| 岑溪市| 武安市| 海淀区| 克什克腾旗| 杨浦区| 磴口县| 彭阳县| 贵南县| 花垣县| 绥芬河市| 乌拉特后旗| 武义县| 凤山市| 苍溪县| 东明县| 北川| 新邵县| 木里| 多伦县| 微山县| 伽师县| 兖州市| 柳林县| 蒲江县| 阿鲁科尔沁旗| 嵊泗县| 青阳县| 筠连县| 正镶白旗| 建宁县| 巴东县| 泾源县| 凉城县| 黄骅市| 嘉荫县| 夏邑县| 罗田县|