找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I; Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A

[復制鏈接]
查看: 24918|回復: 35
樓主
發(fā)表于 2025-3-21 17:00:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Harmonic Analysis on Semi-Simple Lie Groups I
編輯Garth Warner
視頻videohttp://file.papertrans.cn/425/424283/424283.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I;  Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A
描述The representation theory of locally compact groups has been vig- orously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra‘s theory. Granting cer- tain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam- ples scattered throughout the text; the reader, if
出版日期Book 1972
關(guān)鍵詞Analysis; Groups; Harmonische Analyse; Lie; Lie Groups; Liesche Gruppe; algebra; cohomology; finite group; fo
版次1
doihttps://doi.org/10.1007/978-3-642-50275-0
isbn_softcover978-3-642-50277-4
isbn_ebook978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1972
The information of publication is updating

書目名稱Harmonic Analysis on Semi-Simple Lie Groups I影響因子(影響力)




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I影響因子(影響力)學科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I網(wǎng)絡公開度




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I網(wǎng)絡公開度學科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I被引頻次




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I被引頻次學科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I年度引用




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I年度引用學科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I讀者反饋




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:42 | 只看該作者
978-3-642-50277-4Springer-Verlag Berlin Heidelberg 1972
板凳
發(fā)表于 2025-3-22 00:37:58 | 只看該作者
Harmonic Analysis on Semi-Simple Lie Groups I978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
地板
發(fā)表于 2025-3-22 08:22:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:08:39 | 只看該作者
Finite Dimensional Representations of a Semi-Simple Lie Group,presentations to separate points (cf. 3.1.1). In fact . will, in general, admit no non-trivial finite dimensional unitary representations (cf. number 4.3.2). Nevertheless, despite these apparently discouraging facts, the finite dimensional representations of . are important — this will be elaborated on below.
6#
發(fā)表于 2025-3-22 14:10:55 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:55 | 只看該作者
9#
發(fā)表于 2025-3-23 02:41:27 | 只看該作者
0072-7830 n number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam- ples scattered throughout the text; the reader, if978-3-642-50277-4978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
10#
發(fā)表于 2025-3-23 06:05:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
剑阁县| 阜城县| 龙南县| 海宁市| 河曲县| 周口市| 大渡口区| 长泰县| 珠海市| 中卫市| 五台县| 拉孜县| 阳谷县| 樟树市| 武陟县| 伊川县| 柘荣县| 磐安县| 哈巴河县| 开化县| 江口县| 内黄县| 墨竹工卡县| 霍城县| 南充市| 额尔古纳市| 泽普县| 郓城县| 株洲县| 敦煌市| 兰溪市| 四会市| 南开区| 中江县| 涞源县| 宝坻区| 沙河市| 黑龙江省| 常德市| 昌乐县| 沭阳县|