找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I; Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A

[復(fù)制鏈接]
查看: 24919|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:00:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Harmonic Analysis on Semi-Simple Lie Groups I
編輯Garth Warner
視頻videohttp://file.papertrans.cn/425/424283/424283.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Harmonic Analysis on Semi-Simple Lie Groups I;  Garth Warner Book 1972 Springer-Verlag Berlin Heidelberg 1972 Analysis.Groups.Harmonische A
描述The representation theory of locally compact groups has been vig- orously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra‘s theory. Granting cer- tain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam- ples scattered throughout the text; the reader, if
出版日期Book 1972
關(guān)鍵詞Analysis; Groups; Harmonische Analyse; Lie; Lie Groups; Liesche Gruppe; algebra; cohomology; finite group; fo
版次1
doihttps://doi.org/10.1007/978-3-642-50275-0
isbn_softcover978-3-642-50277-4
isbn_ebook978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1972
The information of publication is updating

書目名稱Harmonic Analysis on Semi-Simple Lie Groups I影響因子(影響力)




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I影響因子(影響力)學(xué)科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I網(wǎng)絡(luò)公開度




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I被引頻次




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I被引頻次學(xué)科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I年度引用




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I年度引用學(xué)科排名




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I讀者反饋




書目名稱Harmonic Analysis on Semi-Simple Lie Groups I讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:42 | 只看該作者
978-3-642-50277-4Springer-Verlag Berlin Heidelberg 1972
板凳
發(fā)表于 2025-3-22 00:37:58 | 只看該作者
Harmonic Analysis on Semi-Simple Lie Groups I978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
地板
發(fā)表于 2025-3-22 08:22:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:08:39 | 只看該作者
Finite Dimensional Representations of a Semi-Simple Lie Group,presentations to separate points (cf. 3.1.1). In fact . will, in general, admit no non-trivial finite dimensional unitary representations (cf. number 4.3.2). Nevertheless, despite these apparently discouraging facts, the finite dimensional representations of . are important — this will be elaborated on below.
6#
發(fā)表于 2025-3-22 14:10:55 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:55 | 只看該作者
9#
發(fā)表于 2025-3-23 02:41:27 | 只看該作者
0072-7830 n number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Exam- ples scattered throughout the text; the reader, if978-3-642-50277-4978-3-642-50275-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
10#
發(fā)表于 2025-3-23 06:05:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹溪县| 南漳县| 天峻县| 鹿邑县| 江油市| 石景山区| 仁怀市| 莱州市| 赫章县| 个旧市| 开阳县| 淮南市| 洛扎县| 靖江市| 宣武区| 政和县| 金山区| 孝感市| 岑巩县| 香河县| 威海市| 菏泽市| 广昌县| 平乐县| 榆社县| 永平县| 延川县| 东方市| 中阳县| 吉安县| 宁远县| 梅河口市| 疏附县| 蛟河市| 朔州市| 萝北县| 聊城市| 电白县| 韩城市| 伊吾县| 花莲市|