找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Swarm Intelligence; Concepts, Principles Bijaya Ketan Panigrahi,Yuhui Shi,Meng-Hiot Lim Book 2011 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: HEMI
11#
發(fā)表于 2025-3-23 11:57:09 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:41 | 只看該作者
Integral-Controlled Particle Swarm Optimizationn dealing with multi-modal high-dimensional problems. To overcome this shortcoming, two integral controllers are incorporated into the methodology of PSO, and the integral-controlled particle swarm optimization (ICPSO) is introduced. Due to the additional accelerator items, the behavior of ICPSO is
15#
發(fā)表于 2025-3-24 02:47:43 | 只看該作者
Particle Swarm Optimization for Markerless Full Body Motion Capturearch the true body configurations for any search strategy. In this chapter, we apply the stochastic Particle Swarm Optimization (PSO) algorithm to full body pose estimation problem. Our method fits an articulated body model to the volume data reconstructed from multiple camera images. Pose estimatio
16#
發(fā)表于 2025-3-24 09:55:26 | 只看該作者
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm with Constraint Handlingcalled Constrained Adaptive Multi-objective Particle Swarm Optimization (CAMOPSO). CAMOPSO is based on the Adaptive Multi-objective Particle Swarm Optimization (AMOPSO) method proposed in [1]. As in AMOPSO, the inertia and the acceleration coefficients are determined adaptively in CAMOPSO, while a p
17#
發(fā)表于 2025-3-24 14:28:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:30:40 | 只看該作者
A Multi-objective Resource Assignment Problem in Product Driven Supply Chain Using Quantum Inspired duct driven supply chain. The problem has been mathematically modeled as a multi-objective optimization problem with the objectives of profit, quality, ahead time of delivery and volume flexibility. In this research, product characteristics have been associated with the design requirements of a supp
19#
發(fā)表于 2025-3-24 19:09:54 | 只看該作者
Honeybee Optimisation – An Overview and a New Bee Inspired Optimisation Schemeis class of algorithms is based on the behaviour of honeybees. Current algorithms are based on either of two principles: foraging or mating. Algorithms based on mating utilize the behavioral principles of polyandry found in honey bees and algorithms based on foraging apply the principles of collecti
20#
發(fā)表于 2025-3-25 01:57:31 | 只看該作者
Parallel Approaches for the Artificial Bee Colony Algorithm three parallel models: master-slave, multi-hive with migrations, and hybrid hierarchical. Extensive experiments were done using three numerical benchmark functions with a high number of variables. Statistical results indicate that intensive local search improves the quality of solutions found and,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄迈县| 长兴县| 镇安县| 太和县| 宁武县| 永和县| 芷江| 万载县| 沙雅县| 诸暨市| 嘉禾县| 禄劝| 宜丰县| 福鼎市| 凉山| 黎城县| 新兴县| 修文县| 化隆| 宝应县| 萨嘎县| 浦东新区| 潼南县| 灵武市| 普兰店市| 浦县| 天全县| 保山市| 大余县| 高安市| 阿拉善左旗| 东城区| 吐鲁番市| 贡山| 会同县| 黄梅县| 南平市| 吉林省| 南汇区| 八宿县| 呼伦贝尔市|