找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Social Sciences and Global Public Health; Pranee Liamputtong Reference work 2023 Springer Nature Switzerland AG 2023 global he

[復(fù)制鏈接]
樓主: Taylor
31#
發(fā)表于 2025-3-26 22:28:25 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:18 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:49:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:09 | 只看該作者
Patricia Chiao-Tzu Lee,Cathy Chao-Yuan Wu,Josh Tingntization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced top
36#
發(fā)表于 2025-3-27 20:47:37 | 只看該作者
Laura Vanderbloemen,Hao Thi My Nguyen,Moleen Maramba,Dev Kapilarameterization . of a surface . = . (.) ? ?., where . ? ?. is an open or closed rectangle. This corresponds to the idea of a one-dimensional object, the ., which moves in the space ?. and wipes out the two-dimensional surface . = . (.). The classical fields (i.e. the kinetic variables of the theory
37#
發(fā)表于 2025-3-28 01:06:18 | 只看該作者
Heath Pillenssical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central exte
38#
發(fā)表于 2025-3-28 03:06:30 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:20 | 只看該作者
Yvonne Parrynd its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. The seco
40#
發(fā)表于 2025-3-28 11:34:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝阳县| 宝兴县| 商丘市| 高雄市| 祥云县| 三台县| 玉龙| 囊谦县| 张家口市| 边坝县| 德江县| 绥中县| 哈尔滨市| 百色市| 邵东县| 贵溪市| 石景山区| 达日县| 新宁县| 嘉义县| 大埔县| 呼和浩特市| 台中县| 吉安县| 阜新| 涟水县| 新龙县| 利辛县| 乐至县| 南和县| 县级市| 南汇区| 邻水| 本溪市| 乐陵市| 昔阳县| 上虞市| 荣成市| 宣恩县| 竹山县| 沈丘县|