找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Simulation Optimization; Michael C Fu Book 2015 Springer Science+Business Media New York 2015 Markov.Monte Carlo.Operations Ma

[復(fù)制鏈接]
查看: 44217|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:41:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Handbook of Simulation Optimization
編輯Michael C Fu
視頻videohttp://file.papertrans.cn/423/422156/422156.mp4
概述The first handbook on simulation optimization.One of the hottest research topics and professionally-applied areas in OR.Editor is one of the most prominent names in the field.Includes supplementary ma
叢書名稱International Series in Operations Research & Management Science
圖書封面Titlebook: Handbook of Simulation Optimization;  Michael C Fu Book 2015 Springer Science+Business Media New York 2015 Markov.Monte Carlo.Operations Ma
描述.The .Handbook of Simulation Optimization. presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes..This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science..
出版日期Book 2015
關(guān)鍵詞Markov; Monte Carlo; Operations Management; Operations Research; Optimization; Simulation; Stochastic
版次1
doihttps://doi.org/10.1007/978-1-4939-1384-8
isbn_softcover978-1-4939-5166-6
isbn_ebook978-1-4939-1384-8Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

書目名稱Handbook of Simulation Optimization影響因子(影響力)




書目名稱Handbook of Simulation Optimization影響因子(影響力)學(xué)科排名




書目名稱Handbook of Simulation Optimization網(wǎng)絡(luò)公開度




書目名稱Handbook of Simulation Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Handbook of Simulation Optimization被引頻次




書目名稱Handbook of Simulation Optimization被引頻次學(xué)科排名




書目名稱Handbook of Simulation Optimization年度引用




書目名稱Handbook of Simulation Optimization年度引用學(xué)科排名




書目名稱Handbook of Simulation Optimization讀者反饋




書目名稱Handbook of Simulation Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:44 | 只看該作者
Stochastic Gradient Estimation, stochastic approximation and sample average approximation. We begin by describing approaches based on finite differences, including the simultaneous perturbation method. The remainder of the chapter then focuses on the direct gradient estimation techniques of perturbation analysis, the likelihood r
5#
發(fā)表于 2025-3-22 10:29:20 | 只看該作者
An Overview of Stochastic Approximation,thm that can be viewed as the stochastic counterpart to steepest descent in deterministic optimization. We begin with the classical methods of Robbins–Monro (RM) and Kiefer–Wolfowitz (KW). We discuss the challenges in implementing SA algorithms and present some of the most well-known variants such a
6#
發(fā)表于 2025-3-22 15:23:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:16 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:31 | 只看該作者
Stochastic Constraints and Variance Reduction Techniques,and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic constraints. The presence of stochastic constraints b
9#
發(fā)表于 2025-3-23 04:03:15 | 只看該作者
A Review of Random Search Methods,system performance is estimated via simulation. Next, we discuss methods for solving simulation optimization problems with discrete decision variables and one (stochastic) performance measure, with emphasis on simulated annealing. Finally, we expand our scope to address simulation optimization probl
10#
發(fā)表于 2025-3-23 06:39:09 | 只看該作者
Stochastic Adaptive Search Methods: Theory and Implementation,on quickly. One drawback is that strong convergence results to a global optimum require strong assumptions on the structure of the problem..This chapter begins by discussing optimization formulations for simulation optimization that combines . performance with a measure of ., or risk. It then summar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡东县| 启东市| 雷州市| 高密市| 德格县| 涞水县| 开封县| 内乡县| 闽侯县| 海安县| 乌拉特前旗| 洪江市| 海安县| 石河子市| 盐源县| 商城县| 白沙| 民权县| 若羌县| 乐安县| 建昌县| 景德镇市| 白沙| 樟树市| 新竹市| 密山市| 崇左市| 宁河县| 盖州市| 樟树市| 即墨市| 阿坝县| 嘉荫县| 怀宁县| 绥棱县| 肃南| 观塘区| 客服| 南陵县| 恭城| 大埔县|