找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Simulation Optimization; Michael C Fu Book 2015 Springer Science+Business Media New York 2015 Markov.Monte Carlo.Operations Ma

[復制鏈接]
查看: 44220|回復: 53
樓主
發(fā)表于 2025-3-21 16:41:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Handbook of Simulation Optimization
編輯Michael C Fu
視頻videohttp://file.papertrans.cn/423/422156/422156.mp4
概述The first handbook on simulation optimization.One of the hottest research topics and professionally-applied areas in OR.Editor is one of the most prominent names in the field.Includes supplementary ma
叢書名稱International Series in Operations Research & Management Science
圖書封面Titlebook: Handbook of Simulation Optimization;  Michael C Fu Book 2015 Springer Science+Business Media New York 2015 Markov.Monte Carlo.Operations Ma
描述.The .Handbook of Simulation Optimization. presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes..This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science..
出版日期Book 2015
關鍵詞Markov; Monte Carlo; Operations Management; Operations Research; Optimization; Simulation; Stochastic
版次1
doihttps://doi.org/10.1007/978-1-4939-1384-8
isbn_softcover978-1-4939-5166-6
isbn_ebook978-1-4939-1384-8Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

書目名稱Handbook of Simulation Optimization影響因子(影響力)




書目名稱Handbook of Simulation Optimization影響因子(影響力)學科排名




書目名稱Handbook of Simulation Optimization網絡公開度




書目名稱Handbook of Simulation Optimization網絡公開度學科排名




書目名稱Handbook of Simulation Optimization被引頻次




書目名稱Handbook of Simulation Optimization被引頻次學科排名




書目名稱Handbook of Simulation Optimization年度引用




書目名稱Handbook of Simulation Optimization年度引用學科排名




書目名稱Handbook of Simulation Optimization讀者反饋




書目名稱Handbook of Simulation Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:45:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:44 | 只看該作者
Stochastic Gradient Estimation, stochastic approximation and sample average approximation. We begin by describing approaches based on finite differences, including the simultaneous perturbation method. The remainder of the chapter then focuses on the direct gradient estimation techniques of perturbation analysis, the likelihood r
5#
發(fā)表于 2025-3-22 10:29:20 | 只看該作者
An Overview of Stochastic Approximation,thm that can be viewed as the stochastic counterpart to steepest descent in deterministic optimization. We begin with the classical methods of Robbins–Monro (RM) and Kiefer–Wolfowitz (KW). We discuss the challenges in implementing SA algorithms and present some of the most well-known variants such a
6#
發(fā)表于 2025-3-22 15:23:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:16 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:31 | 只看該作者
Stochastic Constraints and Variance Reduction Techniques,and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic constraints. The presence of stochastic constraints b
9#
發(fā)表于 2025-3-23 04:03:15 | 只看該作者
A Review of Random Search Methods,system performance is estimated via simulation. Next, we discuss methods for solving simulation optimization problems with discrete decision variables and one (stochastic) performance measure, with emphasis on simulated annealing. Finally, we expand our scope to address simulation optimization probl
10#
發(fā)表于 2025-3-23 06:39:09 | 只看該作者
Stochastic Adaptive Search Methods: Theory and Implementation,on quickly. One drawback is that strong convergence results to a global optimum require strong assumptions on the structure of the problem..This chapter begins by discussing optimization formulations for simulation optimization that combines . performance with a measure of ., or risk. It then summar
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 13:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汤阴县| 东丰县| 乌拉特中旗| 离岛区| 大理市| 米易县| 沁水县| 永靖县| 秦皇岛市| 大渡口区| 禄劝| 巴彦淖尔市| 黑河市| 望城县| 商丘市| 东方市| 安仁县| 揭东县| 广丰县| 舒城县| 肥西县| 汝阳县| 定襄县| 建水县| 电白县| 定襄县| 云安县| 五家渠市| 新乡县| 娱乐| 巫溪县| 临朐县| 谢通门县| 贵阳市| 建湖县| 贵南县| 调兵山市| 巴里| 青河县| 礼泉县| 昌宁县|