找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Generalized Convexity and Generalized Monotonicity; Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai Textbook 2005 Springer-

[復(fù)制鏈接]
樓主: calcification
11#
發(fā)表于 2025-3-23 13:29:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:21:42 | 只看該作者
https://doi.org/10.1007/978-3-658-42067-3raic and topological properties of convex sets within ?. together with their primal and dual representations. In Section 3 we apply the results for convex sets to convex and quasiconvex functions and show how these results can be used to give primal and dual representations of the functions consider
14#
發(fā)表于 2025-3-24 02:11:12 | 只看該作者
https://doi.org/10.1007/978-3-663-07690-2Moreover, the function is locally Lipschitz in the interior of the domain of the function. If for a quasiconvex function, the convexity concerns the lower level sets and not the epigraph, some important properties on continuity and differentiability are still preserved. An important property of quas
15#
發(fā)表于 2025-3-24 04:38:24 | 只看該作者
https://doi.org/10.1007/978-3-322-90272-6o optimality of stationary points and to sufficiency of first order necessary optimality conditions for scalar and vector problems. Despite of the numerous classes of generalized convex functions suggested in these last fifty years, we have limited ourselves to introduce and study those classes of s
16#
發(fā)表于 2025-3-24 10:25:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:23 | 只看該作者
Hilde Weiss,Philipp Schnell,Gülay Ate?x functions related to their global nature. One of the main applications of abstract convexity is global optimization. Apart from discussing the various fundamental facts about abstract convexity we also study quasiconvex functions in the light of abstract convexity. We further describe the surprisi
18#
發(fā)表于 2025-3-24 15:54:51 | 只看該作者
https://doi.org/10.1007/978-3-531-91907-2le-ratio fractional programs, min-max fractional programs and sum- of-ratios fractional programs. Given the limited advances for the latter class of problems, we focus on an analysis of min-max fractional programs. A parametric approach is employed to develop both theoretical and algorithmic results
19#
發(fā)表于 2025-3-24 23:03:43 | 只看該作者
https://doi.org/10.1007/978-3-663-01395-2ons. In addition we present topologically pseudomonotone maps. We then derive sufficient and/or necessary conditions for various kinds of generalized monotonicity for several subclasses of maps. We study differentiable maps, locally Lipschitz maps, general continuous maps and affine maps.
20#
發(fā)表于 2025-3-25 01:45:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新沂市| 哈尔滨市| 芦山县| 磐安县| 隆回县| 红安县| 北碚区| 拉孜县| 青冈县| 阳城县| 宁海县| 呼玛县| 石泉县| 岗巴县| 庆元县| 临邑县| 富源县| 天等县| 穆棱市| 广平县| 盐津县| 无为县| 黑龙江省| 子洲县| 达孜县| 永顺县| 九台市| 平凉市| 镇康县| 聂荣县| 玉龙| 仙游县| 嘉禾县| 清镇市| 梨树县| 美姑县| 札达县| 凤凰县| 抚顺市| 绥芬河市| 五峰|