找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Generalized Convexity and Generalized Monotonicity; Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai Textbook 2005 Springer-

[復(fù)制鏈接]
查看: 43826|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:03:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Handbook of Generalized Convexity and Generalized Monotonicity
編輯Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai
視頻videohttp://file.papertrans.cn/422/421363/421363.mp4
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Handbook of Generalized Convexity and Generalized Monotonicity;  Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai Textbook 2005 Springer-
描述.Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity..
出版日期Textbook 2005
關(guān)鍵詞Convexity; Vector optimization; calculus; derivative; game theory; optimization
版次1
doihttps://doi.org/10.1007/b101428
isbn_softcover978-1-4899-9502-5
isbn_ebook978-0-387-23393-2Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer-Verlag New York 2005
The information of publication is updating

書目名稱Handbook of Generalized Convexity and Generalized Monotonicity影響因子(影響力)




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity影響因子(影響力)學(xué)科排名




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity網(wǎng)絡(luò)公開度




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity被引頻次




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity被引頻次學(xué)科排名




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity年度引用




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity年度引用學(xué)科排名




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity讀者反饋




書目名稱Handbook of Generalized Convexity and Generalized Monotonicity讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:06 | 只看該作者
Continuity and Differentiability of Quasiconvex FunctionsMoreover, the function is locally Lipschitz in the interior of the domain of the function. If for a quasiconvex function, the convexity concerns the lower level sets and not the epigraph, some important properties on continuity and differentiability are still preserved. An important property of quas
板凳
發(fā)表于 2025-3-22 03:56:56 | 只看該作者
Generalized Convexity and Optimality Conditions in Scalar and Vector Optimizationo optimality of stationary points and to sufficiency of first order necessary optimality conditions for scalar and vector problems. Despite of the numerous classes of generalized convex functions suggested in these last fifty years, we have limited ourselves to introduce and study those classes of s
地板
發(fā)表于 2025-3-22 05:26:08 | 只看該作者
Generalized Convexity in Vector Optimizationof these functions are provided. Then we study vector problems involving generalized convex functions. The major aspects of this study concern the existence of efficient solutions, optimality conditions using contingent derivatives and approximate Jacobians, scalarization for convex and quasiconvex
5#
發(fā)表于 2025-3-22 11:19:13 | 只看該作者
Abstract Convexityx functions related to their global nature. One of the main applications of abstract convexity is global optimization. Apart from discussing the various fundamental facts about abstract convexity we also study quasiconvex functions in the light of abstract convexity. We further describe the surprisi
6#
發(fā)表于 2025-3-22 16:57:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:10:28 | 只看該作者
8#
發(fā)表于 2025-3-22 22:27:39 | 只看該作者
9#
發(fā)表于 2025-3-23 03:18:35 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛沁县| 蒙阴县| 新田县| 江源县| 合作市| 曲靖市| 鱼台县| 山西省| 诸城市| 珠海市| 曲麻莱县| 博爱县| 桂东县| 图们市| 虹口区| 新巴尔虎右旗| 邓州市| 阿图什市| 宝鸡市| 广元市| 武汉市| 漠河县| 南平市| 文安县| 青河县| 乐都县| 黑山县| 华阴市| 巢湖市| 叶城县| 天长市| 陆良县| 凉山| 南漳县| 杂多县| 山阳县| 通河县| 古丈县| 平罗县| 周至县| 秦安县|