找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 民俗學(xué)
21#
發(fā)表于 2025-3-25 06:17:20 | 只看該作者
Solution of Symmetric and Unsymmetric Band Equations and the Calculations of Eigenvectors of Band MaIn an earlier paper in this series [2] the triangular factorization of positive definite band matrices was discussed. With such matrices there is no need for pivoting, but with non-positive definite or unsymmetric matrices pivoting is necessary in general, otherwise severe numerical instability may result even when the matrix is well-conditioned.
22#
發(fā)表于 2025-3-25 11:31:26 | 只看該作者
Solution of Real and Complex Systems of Linear EquationsIf . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
23#
發(fā)表于 2025-3-25 13:48:13 | 只看該作者
Linear Least Squares Solutions by Housholder TransformationsLet . be a given .×. real matrix with .≧. and of rank . and . a given vector. We wish to determine a vector . such that.where ∥ … ∥ indicates the euclidean norm. Since the euclidean norm is unitarily invariant.where .=.. and ... = .. We choose . so that.and . is an upper triangular matrix. Clearly,.where . denotes the first . components of ..
24#
發(fā)表于 2025-3-25 19:21:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:15 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:09 | 只看該作者
The Jacobi Method for Real Symmetric MatricesAs is well known, a real symmetric matrix can be transformed iteratively into diagonal form through a sequence of appropriately chosen . (in the following called .):.where ..= ..(.) is an orthogonal matrix which deviates from the unit matrix only in the elements
27#
發(fā)表于 2025-3-26 05:54:20 | 只看該作者
The Implicit , AlgorithmIn [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
28#
發(fā)表于 2025-3-26 10:59:41 | 只看該作者
29#
發(fā)表于 2025-3-26 13:48:07 | 只看該作者
978-3-642-86942-6Springer-Verlag Berlin Heidelberg 1971
30#
發(fā)表于 2025-3-26 17:22:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦溪县| 合阳县| 云阳县| 益阳市| 海丰县| 鄢陵县| 潞城市| 和静县| 兴义市| 会同县| 中方县| 泽普县| 巴塘县| 玉田县| 壶关县| 泗阳县| 鄯善县| 寿光市| 外汇| 白河县| 来安县| 贡嘎县| 苏尼特右旗| 从江县| 金湖县| 龙陵县| 密云县| 封开县| 吉木萨尔县| 昌宁县| 潜江市| 临漳县| 嘉善县| 安仁县| 普格县| 阳朔县| 黔江区| 灵宝市| 建阳市| 彭山县| 万宁市|