找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[復制鏈接]
樓主: 民俗學
11#
發(fā)表于 2025-3-23 12:05:10 | 只看該作者
https://doi.org/10.1007/978-0-387-28822-2If . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
12#
發(fā)表于 2025-3-23 15:55:45 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:43 | 只看該作者
https://doi.org/10.1007/978-3-319-41585-7Let . be a matrix of . rows and . columns, .≦.. If and only if the columns are linearly independent, then for any vector . there exists a unique vector . minimizing the Euclidean norm of ..
14#
發(fā)表于 2025-3-24 00:40:11 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:32 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:42 | 只看該作者
https://doi.org/10.5822/978-1-61091-205-1In [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
17#
發(fā)表于 2025-3-24 11:21:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:44:01 | 只看該作者
Symmetric Decomposition of a Positive Definite MatrixThe methods are based on the following theorem due to . [.].
19#
發(fā)表于 2025-3-24 21:26:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:59 | 只看該作者
Symmetric Decomposition of Positive Definite Band MatricesThe method is based on the following theorem. If . is a positive definite matrix of band form such that.then there exists a real non-singular lower triangular matrix . such that
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平湖市| 都匀市| 曲松县| 若尔盖县| 深水埗区| 常宁市| 蓬溪县| 平远县| 澜沧| 泸定县| 邓州市| 西峡县| 阜城县| 新巴尔虎右旗| 阳高县| 克山县| 凉城县| 同德县| 郧西县| 山丹县| 大渡口区| 巧家县| 南投县| 巴青县| 贵阳市| 定边县| 荣昌县| 高雄市| 吴桥县| 广水市| 河东区| 平江县| 高台县| 皋兰县| 阿瓦提县| 祁门县| 凤山县| 昌黎县| 蒙城县| 临漳县| 元江|