找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 18:07:05 | 只看該作者
42#
發(fā)表于 2025-3-28 21:48:53 | 只看該作者
Book 2015eir applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves..The volume c
43#
發(fā)表于 2025-3-29 02:00:23 | 只看該作者
44#
發(fā)表于 2025-3-29 05:50:25 | 只看該作者
https://doi.org/10.1007/978-1-4757-1370-1ced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1∕..
45#
發(fā)表于 2025-3-29 09:00:22 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,roblem. Hence it is a pleasure to present this article to Walter Craig in recognition to the pioneering work he made for our community, among other things, on the relations between Hamiltonian systems and Partial Differential Equations.
46#
發(fā)表于 2025-3-29 11:34:09 | 只看該作者
47#
發(fā)表于 2025-3-29 17:15:12 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:31:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-1051-8sical heuristic ideas that have been used for its explanation, we concentrate on more recent rigorous results which are based on the use of (i) canonical perturbation theory and KdV equation, (ii) Toda lattice, (iii) a new approach based on the construction of functions which are adiabatic invariants with large probability in the Gibbs measure.
50#
發(fā)表于 2025-3-30 06:36:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 德江县| 盐津县| 福州市| 修武县| 交城县| 鄂温| 策勒县| 射洪县| 扶余县| 临泽县| 凤凰县| 德钦县| 全椒县| 迁安市| 郁南县| 嘉义县| 靖江市| 珠海市| 宾阳县| 同心县| 阿巴嘎旗| 武城县| 和硕县| 抚顺市| 邹城市| 磐石市| 涡阳县| 信宜市| 金阳县| 西盟| 育儿| 慈溪市| 理塘县| 长武县| 邵阳县| 龙游县| 普陀区| 宁都县| 乐清市| 景东|