找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 18:07:05 | 只看該作者
42#
發(fā)表于 2025-3-28 21:48:53 | 只看該作者
Book 2015eir applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves..The volume c
43#
發(fā)表于 2025-3-29 02:00:23 | 只看該作者
44#
發(fā)表于 2025-3-29 05:50:25 | 只看該作者
https://doi.org/10.1007/978-1-4757-1370-1ced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1∕..
45#
發(fā)表于 2025-3-29 09:00:22 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,roblem. Hence it is a pleasure to present this article to Walter Craig in recognition to the pioneering work he made for our community, among other things, on the relations between Hamiltonian systems and Partial Differential Equations.
46#
發(fā)表于 2025-3-29 11:34:09 | 只看該作者
47#
發(fā)表于 2025-3-29 17:15:12 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:31:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-1051-8sical heuristic ideas that have been used for its explanation, we concentrate on more recent rigorous results which are based on the use of (i) canonical perturbation theory and KdV equation, (ii) Toda lattice, (iii) a new approach based on the construction of functions which are adiabatic invariants with large probability in the Gibbs measure.
50#
發(fā)表于 2025-3-30 06:36:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍林郭勒市| 门头沟区| 斗六市| 喀喇| 福贡县| 乌什县| 衡阳市| 沽源县| 涟源市| 甘肃省| 准格尔旗| 崇义县| 阿合奇县| 霍林郭勒市| 安庆市| 万年县| 贵溪市| 和龙市| 峨眉山市| 西安市| 渝北区| 太康县| 大理市| 班戈县| 济南市| 宝清县| 英超| 延安市| 来安县| 揭西县| 广昌县| 安化县| 景宁| 天柱县| 苍梧县| 元谋县| 顺义区| 崇礼县| 高尔夫| 东乡族自治县| 镶黄旗|