找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 10:15:36 | 只看該作者
The Physiology of Aggression and Defeatfunction. Let . be the ..-basis formed by eigenfunctions of the operator ?△ + . (.). For a complex function .(.), write it as .(.)?=?......(.) and set .. Then for any solution .(.,?.) of the linear equation . we have .(.(.,???))?=?.. In this work it is proved that if equation (?) with a sufficiently
12#
發(fā)表于 2025-3-23 14:26:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:55:25 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,rac–Benney equation or in short V–D–B equation. As such it contains both new results and efforts to synthesize previous observations. One of main links between the different issues is the use of the energy of the system. In some cases such energy becomes a convex functional and allows to extend to t
15#
發(fā)表于 2025-3-24 04:28:23 | 只看該作者
Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem, infinite channel. Taylor observed in the 1950s that, in such a setting, the tracer diffuses at a rate proportional to 1∕., rather than the expected rate proportional to .. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold t
16#
發(fā)表于 2025-3-24 07:00:14 | 只看該作者
Normal Form Transformations for Capillary-Gravity Water Waves, in the framework of Hamiltonian systems, for which the Hamiltonian energy has a convergent Taylor expansion in canonical variables near the equilibrium solution. We give an analysis of the Birkhoff normal form transformation that eliminates third-order non-resonant terms of the Hamiltonian. We also
17#
發(fā)表于 2025-3-24 14:11:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:55 | 只看該作者
19#
發(fā)表于 2025-3-24 22:15:28 | 只看該作者
20#
發(fā)表于 2025-3-25 03:10:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钟祥市| 册亨县| 大新县| 凉城县| 聂荣县| 渑池县| 高雄市| 临清市| 黄龙县| 定日县| 新乐市| 玛沁县| 女性| 东乡族自治县| 平陆县| 芦山县| 雷波县| 曲水县| 阳春市| 灵宝市| 扶风县| 东兰县| 绥芬河市| 成安县| 来宾市| 博湖县| 灵川县| 开原市| 益阳市| 聊城市| 安仁县| 双流县| 盘山县| 肇州县| 类乌齐县| 巴彦淖尔市| 长海县| 讷河市| 裕民县| 科技| 若羌县|