找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif

[復(fù)制鏈接]
查看: 36822|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:07:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Hamiltonian Mechanics
副標(biāo)題Integrability and Ch
編輯John Seimenis
視頻videohttp://file.papertrans.cn/421/420636/420636.mp4
叢書(shū)名稱NATO Science Series B:
圖書(shū)封面Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif
描述This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the n
出版日期Book 1994
關(guān)鍵詞Hamiltonian; Potential; bifurcation; chaos; cosmology; dynamical system; dynamical systems; invariant; mecha
版次1
doihttps://doi.org/10.1007/978-1-4899-0964-0
isbn_softcover978-1-4899-0966-4
isbn_ebook978-1-4899-0964-0Series ISSN 0258-1221
issn_series 0258-1221
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書(shū)目名稱Hamiltonian Mechanics影響因子(影響力)




書(shū)目名稱Hamiltonian Mechanics影響因子(影響力)學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics被引頻次




書(shū)目名稱Hamiltonian Mechanics被引頻次學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics年度引用




書(shū)目名稱Hamiltonian Mechanics年度引用學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics讀者反饋




書(shū)目名稱Hamiltonian Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:05 | 只看該作者
https://doi.org/10.1007/978-3-031-15862-9ic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
板凳
發(fā)表于 2025-3-22 03:21:16 | 只看該作者
The Physics of Musical Instrumentstic dynamics in atomic systems. In this paper we show that the generalized van der Waals and trap Hamiltonians are special cases of a more general Hamiltonian and, remarkably, they share . integrable limits. Despite their similitude, important differences also exist; the most significant of them bei
地板
發(fā)表于 2025-3-22 08:30:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:59 | 只看該作者
Periodic Solutions of Nonlinear Schr?dinger Equations and the Nash-Moser Methodic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
6#
發(fā)表于 2025-3-22 14:54:41 | 只看該作者
7#
發(fā)表于 2025-3-22 18:54:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:34 | 只看該作者
9#
發(fā)表于 2025-3-23 05:10:02 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 甘德县| 辽宁省| 怀安县| 思南县| 惠州市| 沂南县| 两当县| 永嘉县| 山阴县| 乐平市| 囊谦县| 宁蒗| 隆化县| 承德县| 涞源县| 东乌珠穆沁旗| 凌海市| 安泽县| 靖远县| 银川市| 楚雄市| 南岸区| 宜春市| 河间市| 内乡县| 壶关县| 琼中| 荔浦县| 宁河县| 西城区| 衡山县| 徐闻县| 咸丰县| 武清区| 铜鼓县| 永年县| 弥渡县| 辽源市| 迭部县| 峨山|