找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif

[復(fù)制鏈接]
查看: 36822|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:07:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Hamiltonian Mechanics
副標(biāo)題Integrability and Ch
編輯John Seimenis
視頻videohttp://file.papertrans.cn/421/420636/420636.mp4
叢書(shū)名稱NATO Science Series B:
圖書(shū)封面Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif
描述This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the n
出版日期Book 1994
關(guān)鍵詞Hamiltonian; Potential; bifurcation; chaos; cosmology; dynamical system; dynamical systems; invariant; mecha
版次1
doihttps://doi.org/10.1007/978-1-4899-0964-0
isbn_softcover978-1-4899-0966-4
isbn_ebook978-1-4899-0964-0Series ISSN 0258-1221
issn_series 0258-1221
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書(shū)目名稱Hamiltonian Mechanics影響因子(影響力)




書(shū)目名稱Hamiltonian Mechanics影響因子(影響力)學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics被引頻次




書(shū)目名稱Hamiltonian Mechanics被引頻次學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics年度引用




書(shū)目名稱Hamiltonian Mechanics年度引用學(xué)科排名




書(shū)目名稱Hamiltonian Mechanics讀者反饋




書(shū)目名稱Hamiltonian Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:05 | 只看該作者
https://doi.org/10.1007/978-3-031-15862-9ic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
板凳
發(fā)表于 2025-3-22 03:21:16 | 只看該作者
The Physics of Musical Instrumentstic dynamics in atomic systems. In this paper we show that the generalized van der Waals and trap Hamiltonians are special cases of a more general Hamiltonian and, remarkably, they share . integrable limits. Despite their similitude, important differences also exist; the most significant of them bei
地板
發(fā)表于 2025-3-22 08:30:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:59 | 只看該作者
Periodic Solutions of Nonlinear Schr?dinger Equations and the Nash-Moser Methodic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
6#
發(fā)表于 2025-3-22 14:54:41 | 只看該作者
7#
發(fā)表于 2025-3-22 18:54:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:34 | 只看該作者
9#
發(fā)表于 2025-3-23 05:10:02 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
札达县| 长子县| 宜章县| 连平县| 定南县| 天门市| 探索| 曲水县| 凌源市| 桃源县| 民县| 张北县| 聊城市| 南丰县| 三亚市| 依安县| 揭西县| 龙口市| 福泉市| 平乡县| 丰城市| 黄冈市| 壤塘县| 太白县| 馆陶县| 清徐县| 松江区| 连城县| 宜阳县| 泰来县| 汉沽区| 红桥区| 天柱县| 连平县| 鄢陵县| 库伦旗| 吉木萨尔县| 绥芬河市| 云梦县| 平江县| 平度市|