找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif

[復制鏈接]
查看: 36824|回復: 63
樓主
發(fā)表于 2025-3-21 16:07:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hamiltonian Mechanics
副標題Integrability and Ch
編輯John Seimenis
視頻videohttp://file.papertrans.cn/421/420636/420636.mp4
叢書名稱NATO Science Series B:
圖書封面Titlebook: Hamiltonian Mechanics; Integrability and Ch John Seimenis Book 1994 Springer Science+Business Media New York 1994 Hamiltonian.Potential.bif
描述This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the n
出版日期Book 1994
關鍵詞Hamiltonian; Potential; bifurcation; chaos; cosmology; dynamical system; dynamical systems; invariant; mecha
版次1
doihttps://doi.org/10.1007/978-1-4899-0964-0
isbn_softcover978-1-4899-0966-4
isbn_ebook978-1-4899-0964-0Series ISSN 0258-1221
issn_series 0258-1221
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書目名稱Hamiltonian Mechanics影響因子(影響力)




書目名稱Hamiltonian Mechanics影響因子(影響力)學科排名




書目名稱Hamiltonian Mechanics網絡公開度




書目名稱Hamiltonian Mechanics網絡公開度學科排名




書目名稱Hamiltonian Mechanics被引頻次




書目名稱Hamiltonian Mechanics被引頻次學科排名




書目名稱Hamiltonian Mechanics年度引用




書目名稱Hamiltonian Mechanics年度引用學科排名




書目名稱Hamiltonian Mechanics讀者反饋




書目名稱Hamiltonian Mechanics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:18:05 | 只看該作者
https://doi.org/10.1007/978-3-031-15862-9ic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
板凳
發(fā)表于 2025-3-22 03:21:16 | 只看該作者
The Physics of Musical Instrumentstic dynamics in atomic systems. In this paper we show that the generalized van der Waals and trap Hamiltonians are special cases of a more general Hamiltonian and, remarkably, they share . integrable limits. Despite their similitude, important differences also exist; the most significant of them bei
地板
發(fā)表于 2025-3-22 08:30:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:59 | 只看該作者
Periodic Solutions of Nonlinear Schr?dinger Equations and the Nash-Moser Methodic boundary conditions, since this case is technically more difficult, allows for interesting resonances between the linear modes, and because the case of Dirichlet boundary conditions has already been treated by Kuksin (1988, 1993) using KAM methods. We note that in the special case in which . depe
6#
發(fā)表于 2025-3-22 14:54:41 | 只看該作者
7#
發(fā)表于 2025-3-22 18:54:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:34 | 只看該作者
9#
發(fā)表于 2025-3-23 05:10:02 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 21:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐东| 资源县| 革吉县| 灵寿县| 宁晋县| 宁阳县| 行唐县| 维西| 宽甸| 汝州市| 郴州市| 衡东县| 长顺县| 游戏| 巴楚县| 六枝特区| 宁阳县| 丰县| 五寨县| 安平县| 孟连| 永兴县| 北川| 宁都县| 灵寿县| 洮南市| 鄯善县| 郑州市| 黎平县| 盖州市| 文昌市| 巨鹿县| 即墨市| 五河县| 襄垣县| 安康市| SHOW| 丘北县| 聂荣县| 梧州市| 平潭县|